PERQ: Fair and Efficient Power Management of
Power-Constrained Large-Scale Computing Systems

Tirthak Patel
patel.ti@husky.neu.edu
Northeastern University

Abstract

Large-scale computing systems are becoming increasingly more
power-constrained, but these systems employ hardware over-
provisioning to achieve higher system throughput because appli-
cations often do not consume the peak power capacity of nodes.
Unfortunately, focusing on system throughput alone can lead to
severe unfairness among multiple concurrently-running applica-
tions. This paper introduces PERQ, a new feedback-based principled
approach to improve system throughput while achieving fairness
among concurrent applications.

ACM Reference Format:

Tirthak Patel and Devesh Tiwari. 2019. PERQ: Fair and Efficient Power
Management of Power-Constrained Large-Scale Computing Systems. In The
28th International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’19), June 22-29, 2019, Phoenix, AZ, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3307681.3326607

1 Introduction

Continued progress in high-performance computing has enabled
computational scientists to expedite the scientific discovery, but the
high power consumption of large-scale systems is one of the top
ten challenges for future exascale systems. Large-scale enterprise
computing systems in modern data centers also remain power-
constrained. This limited power availability requires intelligent
job scheduling methods to obtain high system throughput. Prior
works have shown that hardware over-provisioning can be effective
in increasing the efficiency of a power-constrained large-scale sys-
tem. Under this approach, large-scale systems are provisioned with
more number of compute nodes than the system power budget can
accommodate if each node were to operate at the maximum power
level of the node at all times [45, 55].

Why over-provision large-scale computing systems? The
idea of over-provisioning relies on a key insight: applications typ-
ically consume lower power per-node than the compute node’s
specified thermal design power (TDP) limit, as also shown in Ta-
ble 1 (average per-node power consumption of multiple HPC ap-
plications is in the range of 25%-70% of the TDP on an Intel Xeon
E5-2686 node). Traditionally, a system designer would provision
as many nodes in the system as can be powered up at their peak
capacity (TDP) under the given system power budget — referred

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPDC °19, June 22-29, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6670-0/19/06....$15.00
https://doi.org/10.1145/3307681.3326607

Devesh Tiwari
tiwari@northeastern.edu
Northeastern University

Table 1: Applications from Exascale Computing Project Proxy App
Suite [1], used for experiments described in Sec. 3.

Application | Domain Avg. Power (% of TDP)
ASPA Multi-scale physics 27%
CoHMM Material shockwave analysis 27%
CoMD Molecular dynamics 48%
HPCCG Conjugate gradient proxy 57%
RSBench Multipole resonance 39%
SimpleMOC | 3D neutron transport in reactor 69%
SWFFT Cosmology 28%
XSBench Monte Carlo neutronics 43%
miniFE Unstructured finite element solver | 61%
miniMD Parallel molecular dynamics 65%

to as worst-case provisioning. Over-provisioning enables the sys-
tem to concurrently execute higher number of jobs compared to a
worst-case provisioned system, thereby, increasing the system job
throughput (i.e., jobs completed per unit time). Recognizing this
opportunity, researchers have made significant strides in making
over—provisioned systems more efficient [19, 20, 45, 46, 54, 55, 59].
Prior works have demonstrated the economic viability of over-
provisioned large-scale clusters [47] and provided experimental
evidence to support that over-provisioning systems at production-
scale is practically feasible and beneficial [53]. Enterprise computing
data centers also tend to over-provision hardware resources to meet
the peak-load demands [8, 15, 44].

Need for balancing system throughput and fairness on
power-constrained hardware over-provisioned system: An
intuitive approach to increase system throughput on an over-
provisioned system is to execute jobs on all the nodes but power-cap
all the nodes at the same level. Such an approach is promising since
it is able to use more number of nodes than the base system (worst-
case provisioned system) and hence, likely to achieve higher job
throughput. At the same time, this approach is also “fair” to different
jobs since the power is distributed evenly across all the compute
nodes. However, prior works have shown that such a “fairness-
oriented policy” does not yield sufficient improvement in the system
throughput of over-provisioned systems [19, 33, 42, 46]. Essentially,
“fairness-oriented policy” may improve the system throughput but
not sufficiently enough to overcome the capital and operational
cost of over-provisioning — determined by the over-provisioning fac-
tor (i.e., the ratio of total number of nodes in the over-provisioned
system to the number of nodes in the worst-case power provisioned
system, referred as f throughout this paper).

Therefore, to outweigh the capital and operational cost of an
over-provisioned system, researchers have designed “throughput-
oriented policies” where the scheduler may focus on allocating
more power to jobs which are likely to improve system throughput.
For example, an intuitive approach is to give maximum power
to jobs which are the closest to finishing and are running on the
least number of nodes. While effective in improving the system
throughput, such policies are fundamentally unfair by design (as
our results show in the worst case, such approaches can lead to more

https://doi.org/10.1145/3307681.3326607
https://doi.org/10.1145/3307681.3326607

than 200% performance degradation for some applications from
their fair performance level (Sec. 3). We note that although large-
scale HPC systems are primarily designed for high performance,
failure to integrate fairness property into resource management
policies can have undesirable severe side-effects (e.g., unintended
delay in scientific discoveries, inaccurate resource consumption
accounting, unfair treatment of users).

In summary, there is a need for a power management framework
that can meet the two conflicting objectives simultaneously: (1)
achieve higher system throughput to make up for the cost of over-
provisioning, and (2) maintain fairness among jobs. Note that a
rule-based or ad-hoc power management strategy would not be able
to provably fulfill both the objectives simultaneously because such
approaches lack dynamic feedback and theoretical underpinning to
provide guarantees. Machine learning based techniques can learn
the behavior of applications and adjust power allocation reactively,
but can not provide theoretical guarantees when optimizing for
multiple conflicting objectives.

We propose PERQ !, a control-theoretic policy to allocate
power in a way which achieves high system throughput,
while being fair to the jobs. PERQ uses the principles of multi-
objective control theory to achieve both of these goals simultane-
ously. PERQ uses dynamic feedback to adjust to jobs with diverse
characteristics, and to assess the performance impact of its power-
capping decisions. The characteristics of HPC applications which
enable PERQ to meet these goals are discussed in Sec. 2.

Contributions: This paper introduces PERQ, a new, principled
power allocation technique, that ensures that the system is able
to make up for the cost of over-provisioning by improving system
throughput, while maintaining fairness among the concurrently
running jobs. To provide fairness and maximize system throughput,
PERQ provisions more power to jobs which have a large impact on
system throughput, without hurting the performance of other jobs.
This opportunity is enabled by leveraging the observation that appli-
cations have different levels of sensitivity to power-capping: some
jobs perform equally well at lower power-caps as they do at higher
power-caps, while others are more sensitive. Using optimal and ro-
bust control theory, PERQ carefully reduces power-caps of certain
jobs and increases the power allocation of other jobs to maximize
the system throughput. But, making these decisions requires accu-
rately estimating power allocation level and performance relation-
ship for different (unseen) jobs — which is the most challenging task
toward providing fair and efficient power management. To over-
come this challenge, PERQ builds a novel state-space system model,
derived using system identification theory [34], that accurately esti-
mates power allocation level and performance relationship without
over-fitting the model to training workloads. Our evaluation using a
previously unseen application set confirms that PERQ meets desired
target levels and leads to improved performance, although PERQ
uses a completely different set of benchmarks to build the system
model. Complete PERQ experiments, measurement data, and proto-
type implementation is available open-source for the research com-
munity at https://github.com/GoodwillComputinglab/PERQ.
Our experimental and simulation-based evaluation shows that
PERQ leverages the difference in power-cap sensitivity of different

IPERQ is a conveniently chosen acronym for power provisioning for efficiency and
fair equality, and is pronounced as perk (an additional benefit or advantage).

jobs to achieve higher system throughput for over-provisioned sys-
tems, while remaining fair to concurrently running jobs. PERQ’s
evaluation is driven by characteristics of real-world large-scale HPC
systems and jobs. PERQ provides adaptive, stable, and fair treatment
for jobs of different characteristics. PERQ provides better system
throughput for systems with different levels of over-provisioning.
Overall, PERQ improves system throughput by up to 50% points,
compared to the fairness-oriented allocation policy, while remain-
ing fair. PERQ helps HPC systems achieve a higher profit over the
capital and operational expenses of over-provisioning.

PERQ makes the state-of-art for data center power man-
agement landscape richer and easier to advance: While over-
provisioned large-scale clusters are the primary target systems for
PERQ, the core technical innovations in PERQ solution are appli-
cable and useful for managing power in enterprise data centers
as well. Data-center power management has been to central to
advancing and improving data center operations. Researchers have
designed intelligent power allocation techniques that use feedback-
based, multi-level, coordinated approaches to meet different targets
such minimizing power budget violations, reducing power oscil-
lations, and improving efficiency [4, 15, 28, 32, 40, 48, 51, 58, 60].
However, as noted by Li et al. in a recent study published in HPCA
2019 [31], concurrent to our work, current state-of-art data center
power management schemes are oblivious to workload priority
levels and hence, can not maintain fairness. Li et al. [31] make
significant advances in designing first workload-priority-aware
scalable approach to manage data center power, but do not provide
theoretical guarantees about meeting multiple conflicting objec-
tives, convergence, and stability like PERQ does. Integration of
PERQinto data center power management framework will bridge
an important gap: jointly achieving fairness and efficiency objec-
tives with provable guarantees about stability and convergence
in dynamically changing environment. Additionally, researchers
can leverage PERQ’s principled multi-objective control-theoretic
approach to design data center power management schemes. Our
open-sourced PERQ model predictive controller modules lower the
barrier to entry for designing new data center power management
techniques for different target objectives and systems.

2 PERQ Framework

PERQ leverages multi-objective control theory to manage two con-
flicting objectives: (1) achieving high system throughput to com-
pensate for the cost of over-provisioning (system’s objective), and
(2) remaining fair to all concurrently-running jobs (job’s objective).
PERQ employs dynamic feedback to learn about the performances
of individual jobs and adjusts their power allocation by power-
capping individual nodes to ensure that both job- and system-level
targets are met. PERQ provides theoretic guarantees about converg-
ing to and remaining stable at the job and system targets. Next, we
discuss characteristics of HPC applications to demonstrate the need
and feasibility of a feedback-based solution and how PERQ exploits
these characteristics to meet conflicting objectives efficiently.

2.1 Enabling HPC Applications Characteristics

Observation 1: HPC jobs are typically long-running and pro-
vide opportunity for feedback-based dynamic solution. For
a feedback-based dynamic solution to be effective, the jobs have
to be sufficiently long-running to make changes and observe their
effects. For instance, if the job only lasts for a few milliseconds,

1.0

0.8, ; g
w 0.6 i
a -

O 04 — Mira |
0.2 — Trinity |
0.0 . . n

0 5 10 15 20
Runtime (hr)

Figure 1: HPC applications are sufficiently long-running to be
suitable for a feedback based control.

it would be challenging to apply power-capping and observe its
effects in a timely manner to readjust the power-capping level be-
cause power-capping itself may take a few milliseconds to take
effect. Fortunately, HPC jobs typically execute for several minutes
to hours, and some times even days. As shown in Fig. 1, HPC jobs
are sufficiently long (in order of hours) on multiple supercomputers,
including LANL’s Trinity [14] and Argonne’s Mira [27] supercom-
puters. The mean runtime of jobs is 30 minutes on Trinity, and 72
minutes on Mira. Over 62% of the jobs on Mira and 46% of the jobs
on Trinity have runtimes longer than half hour. These character-
istics enable PERQ to easily apply feedback-based solution where
it can apply the control (power-capping) and observe the effect
(performance) within the lifetime of a job.

Observation 2: HPC applications may exhibit dynamic
power consumption behavior during their execution; mak-
ing static or ad-hoc power allocation not suitable and requir-
ing adaptive solution like PERQ. Typically, HPC applications
do not have monotonous resource utilization during their execution
due to their phase-based behavior [18, 26, 30]. Consequently, they
exhibit varying power consumption during their execution time. To
support this, Fig. 2 shows how the power consumption profiles of
three of the applications from Table 1 change during their runtimes
(other applications show similar behavior). This result demonstrates
that it is thus not possible to employ a static solution which sets
one power-cap for the job when it starts, and maintains the same
power-cap during its run. This is why, PERQ employs dynamic
feedback to adjust to these phases and changes the power-caps
accordingly. These phases are often sufficiently long in duration,
and do not change very frequently [18, 43]; as HPC applications
are often iterative and perform similar computations repeatedly.
This enables PERQ’s controller to adjust and converge to a stable
solution and react appropriately when the phase changes.

Observation 3: HPC applications have varied sensitivity to-
ward power-capping. PERQ exploits an interesting characteristic
of HPC applications: power-capping affects the performance of
HPC applications to different degrees at different power-capping
levels. As shown in Fig. 3, the effect of power-capping on HPC ap-
plications can be classified into three categories: (1) low-sensitivity,
(2) medium-sensitivity, and (3) high-sensitivity.

Applications with low-sensitivity toward power-capping do not
observe dramatic performance degradation as the power-cap level
is reduced significantly below the TDP. For example, even at 90W
power-cap level (TDP is equal to 290W), applications such as ASPA,
CoHMM, and HPCG observe less than 20% performance degrada-
tion compared to highest power-cap (290W). This is because such
applications are primarily memory intensive or communication
intensive. On the other hand applications with high-sensitivity to-
ward power-capping observe dramatic performance degradation

. HPCCG 220 miniMD RSBench
c

S 140 A
g 160 180

E 140 120

2 140

g 120 100

§ 100 100 bl

80
& 0 25 50 75 100 O 25 50 75 100 O 25 50 75 100
Time (% of Runtime) Time (% of Runtime) Time (% of Runtime)

Figure 2: Power consumption profiles of different HPC applications
change during their execution time.

Low Sensitivity Medium Sensitivity High Sensitivity

g_ 110

53 100-76% p—p
€o L

52 90 1) 4
Eﬁ 80 1 / 1
a . 70} ASPA i 1
_EE 601 — CoHMM || CoMD — SWFFT |
By 501 — HPCCG | — XSBench /— SimpleMOC |
§§ 40+ — RSBench |{ — miniFE miniMD

< 399 140 150 240 29090 140 190 240 290 90 140 190 240 290

Node Power Cap (W) Node Power Cap (W) Node Power Cap (W)

Figure 3: Different HPC applications have different performance
sensitivity toward different power-capping levels.

with a steep-curve as the power-cap level drops, more than 60%
performance degradation. Applications with medium-sensitivity
toward power-capping exhibit in-between behavior, not very steep
or flat power-capping-performance curve. We discovered that the
number of active cores used by an application is not an absolute indi-
cator of its sensitivity to power-cap. For instance, both, SimpleMOC
and miniFE use all of the available CPU cores; however, Simple-
MOC is much more sensitive to power-capping, while miniFE is
less sensitive than even applications which run on only 32 cores
such as XSBench and miniMD. In fact, miniFE’s performance curve
is similar to that of CoMD, which utilizes only 16 cores. Moreover,
an application’s sensitivity also changes according to the phase it is
in (i.e., compute-intensive phase vs. memory-intensive phase). Due
to these complexities in performance impact of power-capping, it
is non-trivial to use any ad-hoc policies to meet the two goals.

As described next, PERQ exploits this observation to intelligently
re-adjust and shuffle power allocation among jobs such that it
remains fair to different jobs while maximizing system throughput.

2.2 PERQ Approach

PERQ uses the principles of multi-objective control theory to
achieve both system- and job- level objectives simultaneously. The
system-level objective is to achieve proportionally higher through-
put than it would have achieved with a worst case provisioned sys-
tem. The job-level objective is to achieve the performance it would
have achieved had the power been distributed equally among the
nodes. Note that these targets are not static; they change over time.
System-level target varies according to the jobs running on the sys-
tem, while job-level target varies according to the job’s individual
performance and phase behavior. PERQ detects the change in the
target and re-adjusts itself.

One of the key features of PERQ is that it leverages the insight
that different applications exhibit different levels of sensitivity
to power-capping. PERQ can cap an application exhibiting low-
sensitivity toward power-capping at lower level, while achieving
the same performance, and thus, being fair to it. The power saved
from such application can be allocated to applications which are
likely to improve system throughput. We note that PERQ does not

rely on precomputed application models to derive their power-cap
and performance relationships. Instead, PERQ uses feedback to dy-
namically adjust to jobs with diverse characteristics, and to assess the
performance impact of its power-capping decisions.

PERQ uses multi-objective control theory to meet the dynamic
goals, while satisfying hard constraints of the physical system such
as the minimum and maximum power-capping levels of the nodes
and the system’s total power budget. Multi-objective control theory
enables PERQ to individually assign weights to the system-level
throughput target and the job-level performance targets. Addition-
ally, PERQ uses dynamic feedback to adapt and adjust to changing
situations, and make power provisioning decisions at discreet in-
tervals and for discreet targets. As discussed next, grounded in the
theory of multi-objective controls, PERQ enjoys formal guarantees
of responsiveness, convergence, and stability.

2.3 Multi-Objective Control

Table 2: Characteristics of control theory.

Feature Types

Feedback Continuous, Discrete

Techniques | Classical, Adaptive, Stochastic, Optimal
Size SISO, SIMO, MISO, MIMO

Model Static, Dynamic, Uncertain, Constrained

2.3.1 Controller Design A control theoretic solution requires
the selection and design of an appropriate controller to meet the
desired goal(s). Table 2 outlines the features and system charac-
teristics which categorize different controller types. Traditionally,
“classical” controllers belonging to the Proportional-Integrative-
Derivative (PID) family are used in many situations, as they pro-
vide strong convergence and stability guarantees. However, these
controllers are not suitable for PERQ since PID controllers cannot
optimally control a system with multiple conflicting goals. On the
other hand, controllers that can control multiple objectives and
belong to the “optimal” technique family instead of “classical” (e.g.,
Linear-Quadratic Regulators (LQR) controllers) will not be effective
for PERQ’s case. This is primarily because such controllers can
only provide a one-time optimal strategy for a system (assuming a
static system model for infinite time) and hence, are not capable
of providing optimal strategies for dynamically changing system
and job characteristics, as is the case for PERQ. Therefore, PERQ
chooses a Model Predictive Controller (MPC) [29], from the optimal
and robust branch of control theory, which can handle multiple
conflicting objectives simultaneously (multiple inputs and multiple
outputs (MIMO)) and can provide optimal solution in a dynamically
changing environment.

Model Predictive Controller (MPC) [29] devises an optimal con-
trol strategy for a fixed time window at the current decision instance.
The controller analyzes the impact of its previous decision and the
new targets to reassess it’s control strategy and implements another
strategy over the next time window. Use of a receding time window
ensures that the control strategy employed is adaptive and adjusts
itself to provide optimal solution for the targeted time window. This
time window is referred to as the MPC prediction horizon in MPC
literature. PERQ chooses MPC controller as it provides the follow-
ing desirable properties: (1) PERQ requires the controller to have
MIMO controlling ability in order to handle all targets together.
MPC allows PERQ to achieve this successfully by allowing to put
equal weights on the system-level and job-level objectives (and it
can also be configured to assign different weights). (2) Large-scale

computing systems are complex and effect of power-cap on per-
formance depends on various factors. An MPC controller can deal
with systems with uncertain models and dynamic conditions. (3)
An MPC controller can work at discrete intervals, which is required
since power-caps take some time to take effect and nodes require
a discrete interval to study the impact of the power-cap on per-
formance. (4) Lastly, a “constrained” MPC controller allows PERQ
to meet hard system constraints. PERQ needs to ensure that the
power-cap set by the controller for each node remains within the
thermal design power of the node and the overall power usage of
the system remains below the system power budget.

In addition to meeting the above targets, a MPC controller can
be designed to ensure that the targets are reached quickly and opti-
mally. The optimality condition refers to (1) the cost of not reaching
the target during the prediction horizon, and (2) the cost of making
large changes to the “actuator” values from one instance to another
(actuator is the component which enables the control; in the case
of PERQ, this is the node power-cap). The above two costs reflect
the convergence and stability of the controller. A strategy that does
not reach the target is non-convergent, and would thus incur a
large cost pertaining to (1). On the other hand, it is not desirable
to continuously drastically change a compute node’s power-cap
between two consecutive decision intervals (e.g., from 290W (TDP
of an Intel Xeon E5-2686 node) to 100 W to 290W) since it may
lead to highly unstable job and system behavior, and may even
have adverse effect on the node-health in the long term. Thus, a
strategy which is unstable should incur a large cost pertaining to
(2). Therefore, the optimal strategy minimizes both of these costs.
Next, we describe the mathematical formulation of how a MPC
controller minimizes multiple costs.

2.3.2 Mathematical Theory of MPC Controllers The MPC
controller minimizes the cost, J, by solving a quadratic program-
ming problem (Eq. 1) every decision instance. It finds the actuator
values which minimize the overall cost for the next instance, provid-
ing a convergent and stable solution. In Eq. 1, M is the prediction
horizon, N is the number of targets, T; j — Y; ; is the difference
between the target value and actual value (Wt is the corresponding
weight), and U; j k11 — U; j i is the change in the actuator values
between instance k and k + 1 (Wy is the corresponding weight).
Thus, the cost is proportional to the square of the differences be-
tween the targets and the actual values, and the changes in the
actuator values.

M N
J= Z Z(WT(Ti,j ~Yij)? + Wy Ui j a1 — Ui j)®) (1)

i=1 j=1
MPC controllers have been shown to provide convergence and
stability by using the conditions of “terminal cost” and “terminal
region” [6, 9, 39]. Terminal cost is a cost which is added to the
total cost if the solution does not converge by the last stage in the
prediction horizon. Typically, a large terminal cost is chosen in
order to enforce convergence. On the other hand, terminal region is
a set of states (a state is one permutation of all actuator values i.e.,
in the case of PERQ, a state is a permutation of node power-caps
of all nodes in the system) which the last state in the prediction
horizon must belong to in order to ensure that the solution con-
verges by the last stage in the prediction horizon. A large penalty
cost is placed on the controller if it does not converge to one of the
states in the terminal region, therefore, enforcing convergence and
stability. Typically, the terminal region is dictated by the constraints

PERQ Job Statuses Job

1T Scheduler
Generator

Targets

PERQ | Power-caps

Controller

Performance Indicators

Figure 4: Conceptual overview of PERQ feedback control flow.

of the system and the optimality condition of the controller [39].
In the case of PERQ, the terminal region includes states which
meet the power constraints, and minimize the cost sufficiently (as
determined by the weight parameters). It might in some cases be
infeasible to achieve a cost of zero (i.e., impossible to meet all goals
simultaneously); therefore, MPC controller allows convergence to a
non-zero cost state as well. However, any state which does not meet
the above requirements is penalized, and therefore, not allowed.
By meeting these conditions, it can be ensured that the controller
converges as close as possible to the targets, and remains stable
around the final values.

2.4 PERQ Feedback Control

Fig. 4 provides an overview of PERQ dynamic feedback control
loop that helps PERQ adapt to changing job behavior and sys-
tem environment, while meeting the system- and job-level perfor-
mance objectives. Compared to a traditional system, PERQ adds two
new components: “PERQ Target Generator” and “PERQ Controller".
PERQ target generator module determines the target levels: sys-
tem throughput for the whole system (efficiency) and the job-level
performance for each job (fairness). PERQ controller receives two
inputs: (1) target for system throughput for the whole system and
job-level performance for individual jobs from the target generator,
and (2) the current system throughput and current performance
level of different jobs from compute nodes. At each decision inter-
val, PERQ controller determines the power allocation for each job
(and hence, power-cap level for individual compute nodes) based
on the difference between the target level and current performance
level. Power-capping bounds the power consumption of compute
nodes as determined by the controller for a given decision interval.
The feedback process is iterative and discrete, where at the end of
each decision interval, compute nodes send the job’s performance
under the set power-cap for this decision interval to the PERQ
target generator. Then, PERQ target generator determines the new
targets based on the dynamic job behavior and system state — note
that the target levels for both, the system and the individual jobs,
may change over decision intervals as different jobs arrive, change
phases, or finish. Then, the controller receives the difference be-
tween the targets and the observed performances, and determines
the power-caps to ensure accurate goal tracking (the difference
between the goal and the actual performance should be as small as
possible, i.e., the performance should track the goal).

PERQ target generator and controller communicate with the job
scheduler and resource manager to learn the status of currently
running jobs and their node allocations, whenever a new job ar-
rives or finishes. At every decision interval, compute nodes provide
performance data that is used to calculate the current job-level
performance and system throughput by the controller and estimate
the target job-level performance and system throughput by the
target generator.

PERQ uses a simple, effective and easy-to-measure metric, in-
structions per second (IPS), as the performance/progress indicator.
Compute nodes send IPS of the MPI ranks running on the node at
the end of each decision interval. Note that other performance in-
dicators can be used, but PERQ prefers IPS for various reasons. IPS
is available every decision interval. Traditional methods of judging
progress of HPC jobs such as length of a time loop or time between
MPI barriers cannot be used as performance indicators because the
information is not available every decision interval. It can take a
long period to assess the performance impact of a certain power-cap
if the time to execute a loop iteration is long. Moreover, the length
of a loop iteration may vary from one job to another job, which
makes it impossible to make power provisioning decisions for all of
them at the same time (i.e., end of a decision interval). We note that
the target generator and the controller use the IPS of the slowest
job (MPI) process to determine its performance - this avoids the
misleading scenario where a process waiting on a synchronization
barrier may falsely indicate fast progress for the job.

The controller uses the difference between the target IPS and
the current IPS to set the power-cap for each of the nodes. The
target generator aggregates the IPS of all the active jobs to estimate
the current system-level throughput. We note that target generator
needs projected IPS information at different power-caps to generate
new system- and job-level performance targets for next decision
interval. Sec. 2.4.1 and 2.4.2 discuss how a state-space system model
is identified to achieve this purpose.

2.4.1 PERQ System- and Job-Performance Target Genera-
tion The target generator determines the system-level and job-
level targets at each decision instance.

From the system’s perspective, the system throughput target
of the over-provisioned system (Tpp) should be higher than the
throughput of an equivalent worst case provisioned system (Tyyp).
It can be expressed, in a general form, as Top = Timprov-ratio Tw P>
where Timprov-ratio 18 the factor of improvement which is expected
to be proportional to the increase in the size of system. For ex-
ample, a system with 20% over-provisioned nodes may expect the
throughput to go up by 20%. We note that such an expectation is
clearly unrealistic at very high over-provisioning factors (f). Our
evaluation in Sec. 3 shows that PERQ is not sensitive to the value
of system throughput improvement ratio (Timprov-ratio)-

Top is determined dynamically based on the set of currently run-
ning jobs on the over-provisioned system, App, and their respective
performances. To determine the system throughput target, PERQ
needs to know the performance of a worst case power provisioned
system given a set of jobs Ayyp C App running at highest power-
cap (a worst case power provisioned system has fewer jobs than
an over-provisioned system because it has fewer nodes; therefore,
Awp contains the subset of jobs in App which can be accommo-
dated by a worst case power provisioned system on FCES basis).
The performance of all jobs Ay, p is summed up to provide the sys-
tem’s performance. However, it is infeasible to actually run the jobs
on a worst-case provisioned system to determine Ty p. Therefore,
PERQ uses a system model, discussed next, which enables PERQ to
predict the IPS of jobs in Ay p when they are running at maximum
power-cap TDP (Sec. 2.4.2).

From the jobs’ perspective, the performance target for each job
is to achieve the performance that it would under equal power

allocation across the nodes (i.e., fairness-oriented policy). This fair

Nwp
Nop where Nop

power allocation can be estimated Pop = TDP X

and Ny p are the number of nodes in the over-provisioned and
worst case power provisioned systems, respectively. Thus, PERQ
needs a system model to be able to predict the performance of
each jobs during its current phase at TDP and Pop. We discuss the
details of this system model in the next section (Sec. 2.4.2).

2.4.2 PERQ System Model To estimate the performance of a job
at maximum power-cap (i.e., TDP) and fair power allocation (Pop)
in an over-provisioned system, PERQ develops a system model that
captures the power-cap and performance relationship for different
jobs on a given system. PERQ builds a state-space model [49] de-
rived using system identification theory [34]. To ensure that the
model is not an over-fit for the running workloads, PERQ uses a
completely different set of benchmarks to build this model, and
as our evaluation (Sec. 3) shows, PERQ performs effectively for a
different set of unseen application set.

To develop a system model that captures power-cap and per-
formance relationship, one could attempt to build an analytical
model for the processor but the complexity of a processor would
render such an approach ineffective. For example, Intel processors
supporting Running Average Power Limit (RAPL) [12] power-cap
features have a complicated power-cap vs. performance relationship
due to hardware features such as dynamic voltage and frequency
scaling (DVES), dynamic clock modulation, C-state and P-state
management, and Turbo-boost. The power-cap vs. performance re-
lationship is further complicated by software and job activity such
as OS jitter, number of active threads, CPU and memory intensity.
To address this challenge, PERQ employs a data-driven model. The
performance of different NAS Parallel Benchmarks (NPBs) with
different input sizes was collected for different levels of power-cap
on the Intel processor used for evaluation. NPB benchmarks cover a
wide range of application behaviors with different input sizes, which
is used to obtain power-cap vs. performance curves of HPC appli-
cations with different sensitivity toward power-capping. Results
were measured by running each benchmark one hundred times and
switching the power-cap frequently using a uniform distribution,
to emulate a real switching environment that captures impact of
power-capping for different phases of the benchmarks. PERQ, then,
uses the system identification method [34] to develop a state-space
model for the power-cap vs. performance relationship of the node.
Note that, such a model is sufficient for all nodes of the same type;
but it needs to be rebuilt for a different type of node. However, an
HPC system does not change its node type frequently, therefore,
development and use of “build-one-time-use-through-out-lifetime"
model is reasonable to develop the PERQ controller.

State-space model predicts the performance impact of a particu-
lar power-cap based on previous inputs (previous power-cap levels)
and outputs (estimated performance vs. observed performance) [49].
PEROQ uses a 3% order state-space model that uses the previous
three power-caps (P(k — 3), P(k — 2) and P(k — 1)) and outputs
IPS at the current instance, denoted as Y(k), based on the current
power-cap P(k) at decision interval k. Note that it is not possible
to assign a static power-cap vs. performance relationship to the
system as the job performance depends not only on the system
hardware features, but also its own characteristics. Moreover, jobs
are also prone to showing varying performance based on the phase
in which they are operating. Therefore, PERQ employs a model
which takes into account the dynamic impact of power-cap on the
jobs’ performance. Moreover, state-space models are linear and
time-invariant allowing for low-overhead analysis.

Node

Power-cap P(K

Uncertainty D(k)

IPS Y(K)
—

X(k + 1) = AX(k) + BP(k) +VD(k)
Y(k + 1) = CX(k) + D(k)

Figure 5: Conceptual view of the PERQ’s state-space model of the
system that captures the power-cap and performance relationship,
accounting for processor complexity and uncertainties.

Table 3: MPC matrices referred to in Eq. 2, Eq. 3 and Eq. 4.

Ny Number of jobs running on the system

Nop Number of nodes in the over-provisioned system

M Prediction horizon of MPC controller

T Vector of performance targets

Y Vector of actual performances

P Vector of power-caps of nodes

AP Vector of changes in power-caps from previous
instance (k — 1) to current instance (k)

Wr Matrix of weights on system (Wr,) target and
job (Wr,,,) targets ‘

Wap Matrix of weights on changes in power-caps (AP)

Xo Matrix of current node states at instance k

Py Vector of current node power-caps at instance k

Q Vector of system states for the next M intervals

G,F Control theoretic matrices which map Xy and Py
to Y, respectively

H,D Control theoretic matrices which map Wt and
Wap to Q, respectively

J Cost function to be minimized

Fig. 5 provides a visual representation of the state-space model
of a node. MATLAB’s system identification tool is used to develop
a controllable state-space model, taking into account the uncer-
tainties of the system. The figure also shows the equations which
govern the state space node model, where P(k) is the node power-
cap, X (k) is the state of the node, Y(k) is the IPS of the node, and
D(k) is a disturbance signal which accounts for system noise and
uncertainties. Matrices A, B, C and V map the corresponding signals
to the output signal. These matrices define the system behavior and
are identified by the system identification tool based on the mea-
sured data. The internal state X(k) of the node gets updated every
decision instance based on the active input-output relationship of
the currently running job. PERQ uses this model to estimate the
performance of a job at maximum power-cap (i.e., TDP) and fair
power allocation (Ppp) in an over-provisioned system.

2.4.3 PERQ MPC Controller Next, we proceed to design a con-
troller for the above system model. As discussed in Sec. 2.3.1, PERQ
employs an MPC controller to optimize the decision cost and attain
both targets simultaneously. Expanding on Eq. 1, and specializing
it for PERQ, the decision costs related to PERQ’s MPC controller
are mathematically represented in Eq. 2, which shows the overall
cost of a control strategy, denoted as J, during a prediction horizon
M. The controller predicts the performance of the Ny jobs and the
system for the next M control decision intervals on the Nop nodes
based on the optimizing strategy. Tj,; — Yj, ; refers to the difference
between the target performance and the actual performance during
instance j of job i, and Wr;,, is the corresponding weight. AP;;

refers to the change in power-cap on node i between instances j — 1
and j, and Wy p is the corresponding weight. The parameters and
variables used in Eq. 2 are listed in Table 3.

M Ny Nop
J= Z (erob (Tji = Y, 0)% + Wap Z (AP ;)?
= = i=1

sys

+ Wr, (Tj,sys_Yj,sys)z) (2)

Representing J in matrix form gives the following Eq. 3.

J=T-Y)"Wr(T -Y)+ APTWppAP 3)

The MPC controller minimizes the cost, J, by solving the qua-
dratic programming equation shown in Eq. 4 (reduced from Eq. 2).
It finds the power-caps for all the nodes which minimize the over-
all cost for instance k + 1. This controller provides a dynamically
convergent and stable solution, as was discussed in Sec. 2.3.2.

1
find P to minimize J = 5PTQP +YTp ()
where Q = HYWrH + DT WppD
and Y = H Wp(T - GXo — FPy)

Overall, PERQ manages multiple targets by monitoring job char-
acteristics and reacting accordingly. PERQ takes the job progress
indicators (IPS) as the input, and outputs the power-caps for the
nodes, solving the above optimization problem, and sends the new
power-cap level to the nodes at every decision instance to reach
the optimal and stable solution, as shown in the evaluation (Sec. 3).

2.4.4 PERQ Scope and Limitations PERQ requires node-level
power-capping feature to be enabled in the processor (e.g., Intel’s
Running Average Power Limit (RAPL) interface). It may take a
few milliseconds to apply and observe the effect of power-capping.
Therefore, the control decision interval has to be order of seconds.
Our control decision interval is ten seconds, which provides effec-
tive performance (Sec. 3). Consequently, PERQ is most effective
when jobs run for at least longer than a few minutes to span a few
control intervals - as is often case for a productive and useful HPC
system; jobs shorter than a few minutes do not require compli-
cated power allocation decisions. We note that the PERQ’s decision
making is not on the critical path and it makes adjustments at the
end of each decision interval for new job arrivals and terminations.
The length of PERQ’s decision interval does not need to change
dynamically and can be configured as needed. PERQ has no limita-
tions or restrictions in terms of a job’s size (i.e., number of nodes it
spans). Our evaluation considers real job trace from different super-
computers that comprise of different job sizes and runtime lengths.
Finally, PERQ’s performance is not dependent on the benchmark
suite used for developing the state-space model, but development
of this model requires one-time effort for a given node-type. We
anticipate this to be a reasonably low investment effort (less than
a week of time on only a few nodes — one for each type), for a
multi-thousand node cluster expected to run for multiple years. We
will make the PERQ controller code publicly available for easier
adoption and extension of PERQ inspired approaches.

3 Evaluation

Methodology: PERQ evaluation is driven by system parameters
and job characteristics of real-world supercomputers. We perform
both real-system experiment based evaluation and simulation based
exploration to understand the performance trends of PERQ. Note
that performing a real-system experiment on a production super-
computer with power-capping is both time- and cost-prohibitive.
To address this, we perform simulation based exploration to gain
deeper insights and demonstrate that PERQ performs effectively on
a wide variety of real-world system parameters and job characteris-
tics. To drive our simulation study, we use trace of jobs which were
executed on Mira and Trinity supercomputers [2, 14, 16, 27]. In
particular, job characteristics such as the number of nodes they are
running on and their runtime are used for the simulation. System
characteristics such as the number of nodes are also emulated from
Mira and Trinity. Mira contains a total of 49,152 IBM PowerPC A2
nodes, while Trinity consists of 19,420 Intel Xeon nodes. For the
simulation, we use First-Come-First-Serve (FCFS) with back-filling
job scheduling, while making sure that there is always a job avail-
able to run at the head of the queue. This is done in order to obtain
the true improvement in the job throughput of an over-provisioned
system. The statistical distribution of job characteristics such as
job size and runtimes are kept same the simulated cluster (Mira
and Trinity), but to make the evaluation tractable, the simulation
is configured to emulate one day (24 hours) of an actual system.
This translates to 1052 and 1024 jobs on Mira and Trinity systems,
respectively, for the over-provisioned system with f = 2.0. Note
that power consumption profile of the jobs running on these clus-
ters is not collected and hence, is not directly available for using
as an input to our evaluation. Therefore, the power-performance
relationship profiles and phase-behavior of jobs are taken from the
application mentioned in Table 1 (taken from Exascale Computing
Project (ECP) Proxy Application Suite). Each job is assigned the
power-performance characteristics of one of the ten applications
using a uniform distribution to have diverse and representative
range of behavior. We use the CVXOPT [3] package to solve the
quadratic programming aspect of PERQ’s MPC controller.

The PERQ prototype is deployed on a local HPC cluster: Tardis.
A private network is used on Tardis consisting of 16 nodes: one
node being the scheduler node (running the python job sched-
uling, target setting and controlling features), and others being
the cluster nodes (running the actual jobs and performing power-
caps). The nodes consist of Intel Xeon E5-2686 processors, and have
socket-level RAPL power-capping functionality. The cluster uses
Infiniband interconnect for communication over the network. All
nodes communicate with the scheduler over a TCP socket about
power-cap, IPS, and job start and finish information. Like the simu-
lation, the prototype also uses the CVXOPT package to solve the
quadratic programming problem every instance, and uses FCFS
scheduling. Lastly, a 100 jobs are run for the prototype for each
over-provisioning factor and policy, and the benchmarks used for
the jobs are taken from Table 1. These runs last for hours on the
full cluster and are repeated multiple times to obtain statistically
significant results.

We first present simulation based evaluation driven by Mira and
Trinity parameters to demonstrate that PERQ works across different
job and system characteristics and then, followed by prototype
results that support our simulation results and provide research
community an implementation prototype for adoption.

[A:l FOP [S)S MEE SRN PERQJ

=1)
o
- N
w o

o

N » O @
o
v

o

System Throughput
Mean Performance
Degradation (%)
=
o

(% Improv. over f

o
o

1.0 1.2 1.4 1.6 1.8 1.0 12

Over-Provisioning Factor (f)

2.0

1.4

Over-Provisioning Factor (f)

100

g 80
60
40
20
0

40%| | 70% 196%| [227%|

Max. Performance
Degradation (%.

2.0 1.0 1.2 14 1.6 1.8

Over-Provisioning Factor (f)

1.6 1.8 2.0

Figure 6: PERQ provides proportionally high system throughput, while being fair for Mira supercomputer parameter-driven evaluation.

[l:] FOP [J S)S HEE SRN PERQ]

55 g_40 56%| | 43%
<100 go\"

o ~30

=2 Ec

03 75 52

Es £ © 20

g8 &F

O Q c @10

gE » 88

< =
[) 0
1.0 1.2 1.4 16 1.8 20 1.0 1.2

Over-Provisioning Factor (f)

1.4

Over-Provisioning Factor (f)

— 250 286%

B oRN
u o u o
S & © ©

Max. Performance
Degradation (%.

o

2.0 1.0 1.2 14 1.6 18

Over-Provisioning Factor (f)

1.6 1.8 2.0

Figure 7: PERQ also provides proportionally high system throughput, while being fair for Trinity parameter-driven evaluation.

Power Provisioning Policies: We compare PERQ to several poli-
cies. For fairness, we compare it to the fairness-oriented policy
(FOP), which allocates equal power to all the nodes on the over-
provisioned system. For system throughput, we compare it to sev-
eral throughput-oriented policies. The first policy prioritizes jobs
which are running on the fewest number of nodes: smallest job size
(SJS). This policy allocates more power to small jobs, anticipating
that accelerating them would improve system throughput. Con-
versely, one might also imagine prioritizing large jobs (LJS) and
helping them finish faster, in order to free up more nodes for other
jobs, thus, improving system throughput. However, based on our
experiments such a policy actually degrades system throughput.
This is because it takes a lot of power to accelerate large jobs, and
diverting power to such jobs adversely impacts other concurrently
running jobs, slowing them down considerably.

The second throughput-oriented policy prioritizes jobs which
are closest to finishing and are running on the fewest number of
nodes: smallest remaining node-hours (SRN). This policy diverts
power to shortest and smallest jobs, knowing that finishing them
would improve throughput. It uses future knowledge of when the
job is going to finish, which is not known for HPC jobs apriori
— users typically overestimate runtime and runtime prediction is
prone to inaccuracy. However, we compare PERQ to this policy in
order to demonstrate that PERQ provides comparable throughput
improvement to a policy which may have prior knowledge and
solely focuses on throughput.

Objective Metrics: To quantify the system’s performance, we use
the system’s job throughput, which is the number of jobs which com-
plete execution during the duration of the experiment. To assess
how fairly the jobs are treated, we use their mean performance degra-
dation: the mean runtime degradation of only the jobs which expe-
rience degradation in their runtime with PERQ compared to their
runtime with FOP. Note that this metric takes into account only
the jobs which experience degradation because considering jobs
that benefit from unfairness will skew our assessment of fairness.
Jobs which experience better or equal performance as compared to
FOP are not considered as they are deemed to be treated fairly. We
use the maximum performance degradation metric to quantify the

worst case for a given policy. By definition, FOP enjoys a mean and
maximum job performance degradation of 0%.

PERQ improves system throughput significantly, while re-
maining fair to jobs. Fig. 6 and Fig. 7 show the improvement in
system throughput of different power provisioning policies, over
worst-case provisioning (f = 1) at different over-provisioning
factors, for Mira and Trinity supercomputer parameter driven sim-
ulations, respectively. First, we observe that FOP and other ad-
hoc policies such as SJS are not able to achieve proportional in-
crease in system throughput at any over-provisioning factor, i.e.,
the improvement in system throughput is always less than the
over-provisioning factor. We obtained similar results for LJS (prior-
itizing power to largest job size) policy. Second, we observe that a
throughput oriented policy such as SRN which accounts for both
job size and remaining time can improve throughput, but not pro-
portionally. However, PERQ is able to improve system throughput
significantly and proportionally at all over-provisioning factors (f)
and for both Mira and Trinity settings which represent different job
characteristics. Notably, PERQ is able to beat the competing policy,
SRN, which specifically focuses on improving throughput and has
“future” knowledge (job completion time); PERQ does not have access
to such knowledge and still provides throughput gains. Note that
beyond f = 2.0, the improvement in system throughput saturates
because the system power budget becomes the bottleneck.

Next, we discuss the fairness performance of PERQ. Fig. 6 and
Fig. 7 also show the mean and maximum performance degrada-
tion with different power-provisioning policies at different over-
provisioning factors. The throughput-oriented policies have signif-
icantly high mean and maximum performance degradation, with
SJS performing particularly worse. In fact, SRN, which provides
high improvement in throughput, is 2-3x worse in terms of mean
and maximum performance degradation compared to PERQ. For ex-
ample, for Trinity, the maximum performance degradation of SRN
is over 150% at f = 2.0 while PERQ incurs less than 30% maximum
performance degradation. Lastly, we note that PERQ achieves up to
50% better system throughput than FOP, while maintaining a mean
performance degradation of less than 8% for both Mira and Trinity.
This shows that PERQ achieves a large improvement in system

= 1le9 = lell
54 — = 3 3150- 110
o 2 o L,.’UJ
83 ——Power-Cap [2 = 31001 Los
o | TargetIPS [, © & .
22 Actuallps [~ ¢ 50
o , , o - T T 0.0
o o
0.0 0.2 0.4 0.0 05 1.0 15
Time (hr) Time (hr)
(a) (b)

fmy) 1e9 f)
E _'—|l*"__6 E
28 © 3
S6 s 9
5 P
:* o & 0
90 1 2 3 “ 00 05 10 15
Time (hr) Time (hr)

(©) (d)

Figure 8: PERQ tracks job-level performance targets effectively for varied jobs, and provides convergent and stable power allocation.

o
N
o

| |
N e
Degradtion (%)
[
o w

System Throughput
(% Impov. over Bar 1)
«

Mean Performance

|
w

5 10 20 40 60120
Control Interval (s)

5 10 20 40 60 120
Control Interval (s)

Figure 9: PERQ’s throughput is not very sensitive to larger control
intervals.

throughput at a lower over-provisioning factor, while remaining
fair compared to ad-hoc and future-knowledge policies.

Interestingly, our results reveal that PERQ is able to achieve
similar throughput as FOP with much lower over-provisioning cost.
For instance, for Trinity, FOP achieves 80% improvement in system
throughput over worst case over-provisioning at f = 2.0. However,
PERQ achieves the same improvement in throughput at a much
lower over-provisioning factor of f = 1.4 - thereby, requiring 30%
less number of nodes. According to recent data presented by Cray
Inc., 47% of the total cost-of-ownership (TCO) of an HPC facility
is used as capital expense for purchasing the equipment, while 7%
is used as operational expense for the equipment [38]. Thus, 30%
fewer nodes can help reduce the overall cost of equipment by 30%,
and the TCO by 16.2%. If these numbers are converted in mone-
tary savings, it would result in more than a million dollars saving
over the typical life span of a supercomputer [35] while improving
system throughput and maintaining high level of fairness.

PERQ is convergent, responsive and stable. Fig. 8 shows how
a job’s power-cap level and performance under a given target (de-
termined based on fairness) evolve over its execution time for four
example jobs on Trinity. These examples jobs are selected to cover
a wide range in job and PERQ characteristics.

Recall that convergence is the ability of the controller to actually
meet the target performance, responsiveness is its ability to reach
the target quickly, and stability is the ability to provide constant
performance once the target is reached.

Fig. 8(a) shows that PERQ converges to the job-level target
quickly (within a few minutes, less than a minute in many cases).
In fact, PERQ achieves slightly better performance than the target
because it is also trying to meet the system target which requires
higher performance from some jobs. We also observe that the job
performance is stable once the controller meets the target.

Fig. 8(b) shows a case where the job is not allocated enough
power initially to meet its job-level target, but its performance
remains close to the target. This is because the controller deems
that this power can better serve to meet the system’s or other jobs’
targets. We found that this job has low sensitivity toward power-
capping and this allows PERQ to borrow approx. 50kW of power

to distribute it to other jobs, without significantly affecting the
performance of this job. We note that eventually, the job is given
enough power to meet its target, due to the completion of other
jobs and arrival of jobs with different characteristics.

Fig. 8(c) shows a case where a job is given enough power to
meet its goal for the most part. However, there are disruptions in
between, which can occur when there is a burst of jobs starting
or jobs finishing. During such periods, the controller responsively
tries to figure out the power-caps for the new combination of jobs.
In the case of this job, the power-cap is lowered during disruptive
phase, but the performance does not get affected considerably.

Lastly, Fig. 8(d) shows a job which is executed during a time
period when there is a lot of job start and finish activity, and the
job’s power-cap changes frequently during its execution, especially
because the controller has observed that this job has low-sensitivity
toward power-capping. During such high-activity time periods, the
controller readjusts the power-cap gradually and the job’s perfor-
mance converges and stabilizes to a new value.

PERQ performs effectively across different control param-
eters and is not sensitive to selection of parameters values.
Our results show that PERQ continues to provide good performance
(higher system throughput while meeting fairness goals) as we vary
different control parameters (length of decision interval and pre-
diction horizon, system throughput improvement ratio, weights on
system throughput and AP). In fact, our results support that PERQ
does not need to highly tune or carefully select these parameters
to achieve high performance.

Fig. 9 shows the effect of the control interval on the performance
of PERQ for Mira supercomputer job trace. Recall that the control
interval is the time between two decision instances when the job
performances are examined and the nodes are assigned new power-
caps. We notice that system throughput degrades minimally even
at high control intervals (less than 3%), and mean performance
degradation for unfairly treated jobs goes above 5% only at control
intervals higher than 40 seconds. We observe similar results for
the MPC prediction horizon, which is the number of future control
intervals which the controller optimizes its decisions over. So a
longer MPC prediction horizon is expected to provide faster con-
vergence to the target, but may incur larger computation overhead.
We found that that with our chosen control interval length of 10
seconds, PERQ was not sensitive to the length of MPC prediction
horizon (i.e., number of control intervals). Note that we avoid con-
trol intervals less than 5 seconds to avoid aggressive power-cap
switching, even though they are equally effective.

Recall that the system throughput improvement ratio determines
how high the system throughput target should be set compared to
the over-provisioning factor. The larger this ratio, the higher is the

= 15 = 2a 0.0

3515 g 35125 853 35 853

8 5 £8 S £8 _ =S

o 9. 10.0 o, —-05

39 Ec10 36 Ec 38 Ec

o510 59 o> 502 o> 552

g gg £2 75 22 £%-10 55

T3 g3 3 50 $3 = g8

ES s co S €8 co1 E8 15 col

%E g8 2E 25 58 gET 88

AL 0 = 0 AR 00 = 0 AR 20 = 0
1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 5 10 25 50100 1 5 10 25 50100
System Throughput System Throughput Sys. Throughput Weight Sys. Throughput Weight AP Weight AP Weight
Improvement Ratio Improvement Ratio

(a) (b) (©)

Figure 10: PERQ’s effectiveness is not sensitive to control parameters such as (a) system throughput improvement ratio, (b) system
throughput weight, and (c) AP weight on system throughput and job fairness.

[CoFoP Cs)s = SRN mEm PERQ|

57 100 g 30 49% g 108%) 84%
£< g €825 2R 60
23 £ c 20 g <
23 60 58 S35 40
£ tw® 15 t©
S 40 &3 3
€= c10 ap
o c o 20
S E 20 39 5 S0
ag ol =, =%
= 1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.2 1.4 1.6 1.8 2.0
Over-Provisioning Factor (f) Over-Provisioning Factor (f) Over-Provisioning Factor (f)

Figure 11: PERQ real-system experimental evaluation also confirm that PERQ is more effective than competing policies both in terms of

system throughput and fairness.

Low Sensitivity App. (ASPA)
= High Sensitivity App. (SimpleMOC)

e ﬁ
25
75 W
50

50 100 150 200 250 300 350 400
Time (seconds)

Power-Cap
(% of Peak)
o
S

Performance
(% of Peak)

Figure 12: PERQ prototype automatically detects applications
with different sensitivity toward power-capping and intelligently
changes power allocations to meet job-level targets. The second
job starts around 50 seconds mark and the first job ends at around
225 seconds mark. Note that the power-cap setting has a minimum
limit too (as an idle node still consumes power) and hence, can not
be set to zero even after an application finishes its execution.

target for system throughput. If the value of ratio is equal to one,
it indicates that the target for system throughput is proportional
to increase in the number of over-provisioned nodes in the system.
This is conservative and hence, the system throughput improve-
ment ratio is set much higher and our results show that PERQ is
not sensitive to it once the value chosen is 4 or higher (Fig. 10(a)).
Finally, our results also demonstrate that PERQ is not sensitive
to selecting the weight placed on meeting the system throughput
target or AP (the amount of change in the power-cap of a node
from one control interval to another) (Fig. 10(b) and (c)). Recall that
system throughput weight is different than the system throughput
improvement ratio. The system throughput improvement ratio de-
termines how high the throughput target is set, while the system
throughput weight determines how hard the controller should try
to meet this target. On the other hand, AP weight determines how
much cost is associated with large AP, i.e., how must cost is asso-
ciated with large switching of the power-caps from one control
instance to next. Fig. 10(b) and (c) show that system throughput
improvement and fairness metric is not affected significantly even
across a wide range of parameter values. Note that PERQ can also

be used to solely focus on improving the system throughput by
placing orders of magnitude higher weight on throughput than
fairness. We found that following this strategy results in up to 5%
system throughput improvement over PERQ, but increases the max-
imum performance degradation close to 70%. Finally, we present
PERQ prototype results and analysis.

The PERQ prototype implementation results show that
PERQ is an effective strategy in meeting both throughput
and fairness targets, and the observed improvements align
with simulation results. Fig. 11 shows the system throughput
and mean performance degradation of PERQ for different over-
provisioning factors. Similar to Mira and Trinity simulation results,
PERQ prototype results show that it can deliver up to 25% bet-
ter throughput than FOP, while maintaining a mean performance
degradation of less than 10%. Other ad-hoc throughput-oriented
policies, SJS and SRN, are neither able to improve throughput as
much as PERQ, nor are they able to remain as fair as PERQ because
of their lack of feedback-based principled approach. In fact, SRN
has a mean performance degradation of up 20% (double of PERQ),
and maximum performance degradation of up to 60%, while not
providing the necessary system throughput improvement.

Lastly, we use the prototype to provide insights into the dynamic
behavior of PERQ. Fig. 12 shows how the provisioned power trades
hands between two different types of applications running on the
Tardis HPC cluster. Initially, a low sensitivity application starts run-
ning and is allocated as much power as possible, while the empty
node is allocated minimum power. At around the 50 seconds time
mark, a high sensitivity application starts running on the empty
node. The controller determines that it is a high sensitivity applica-
tion and gradually transfers power to that application. This does
not degrade the performance of the low sensitivity application,
while it improves the performance of the high-sensitivity appli-
cation. Eventually, the controller completely switches the power
allocations of the two applications (at about 150 seconds time mark).
The low-sensitivity application continues to perform at close to
100% of its peak performance even at minimum power allocation,

=—MPC Horizon 2 ==3 =—4 ——5

60 //6/

==—MPC Horizon 2 ==3 ==—4 ——5
80 ,LFI_J.J_,_J__I
60 /[‘/;

CDF of Total Number of
Controller Decisions (%)
N
=

CDF of Total Number of
Controller Decisions (%)
S
S
D

%.0 0.5 1.0 15 2.0
Controller Decision Time (seconds)

%.0 0.1 0.2 0.3 0.4 0.5
Controller Decision Time (seconds)

Figure 13: PERQ controller makes its power-capping decision
within 0.5 seconds for more than 80% cases: Mira supercomputer
(left) and Trinity supercomputer (right).

until it finishes at 55% time mark. This demonstrates how PERQ
dynamically detects application characteristics and allocates power
in a manner which benefits the system and the jobs.

Overhead Analysis: Finally, we discuss the scalability and over-
head aspects of PERQ. PERQ has two sources of overheads: (1) MPC
controller decision making overheads, and (2) communication of
performance indicators (e.g., IPS) from each node to the controller.
As we discuss next, our results provide quantitative evidence to
show that these overheads are relatively small compared to the
control interval. However, more importantly, we first note that
these overheads are not on the critical path of application execu-
tion. These overheads only delay the optimal power-capping targets
for different jobs and hence, these overheads do not pause or in-
terrupt the application execution or computing cluster operations.
In other words, these overheads simply make the effective length
of the control decision intervals slightly longer. Our simulation
and experimental evaluation includes these overheads and shows
that PERQ is still effective at achieving its goals. Fig. 13 shows that
MPC controller makes most of its decisions within 0.5 seconds for
both the simulated systems Mira and Trinity (with 1052 and 1024
jobs, respectively) for MPC prediction window of length four. As
the prediction window size increases, the overhead increases but
the overhead still remains fairly low. We also note this overhead is
not dependent on the scale of the system, but instead depends on
the number of concurrently running jobs and their characteristics.
For Trinity, only in less than 2% cases, the MPC controller deci-
sion making takes more than one second. Increasing the number
of concurrently running jobs in the order of 10,000 can prohibi-
tively increase the MPC controller decision making time in some
cases due to computationally intensive nature of the calculations.
However, several well-known strategies can be applied to alleviate
this bottleneck: offloading the computation to GPUs, hierarchical
decision making, eliminating the need to perform calculation for
every job at every decision instance, creating groups of jobs with
similar characteristics. Future efforts can exploit such opportunities
to optimize MPC decision controller performance even further.
The second source of overhead (communication of performance
metric from the nodes to the controller) was measured to be even
lower. We stress tested our system by spawning 100,000 clients in
our Tardis cluster and found that communicating such a information
from these nodes to controller incurs only 0.19 seconds of delay.
Note that we did not perform any optimizations to reduce this delay
(e.g., using a dedicated network, performing reductions by filtering
redundant information, etc.) that HPC clusters typically perform to
monitor system health at much finer granularity and sending it to
management workstations. In summary, MPC decision making is
the primary source of delay in optimal power-capping control. But,
even MPC decision time is relatively small and helps PERQ achieve
effective results in terms of fairness and throughput (these delays
and corresponding effects are modeled in our simulation results).

4 Related Work

This section provides an overview of prior solutions proposed for
efficiently power provisioning on HPC systems. Prior studies have
examined the performance of jobs under different power manage-
ment techniques [24, 25, 61]. However, they do not provide solutions
to provide performance guarantees under target power budgets.

Many studies have looked into maximizing resource utilization
(system job throughput) while satisfying power constraints [22,
46, 55, 56]. These works are mostly concerned with dynamic appli-
cation scheduling to maximize system utilization. Thus, they are
compatible with PERQ and can be combined with it. Similarly, job
scheduling and placement techniques [36, 57] to maximize perfor-
mance under fixed energy budgets are also complementary to PERQ,
as PERQ begins to function after the jobs have been scheduled, and
is not concerned with scheduling.

Many studies have proposed various uses of dynamic voltage
and frequency scaling (DVFS) and power capping to meet power
constraints [7, 11, 33, 52]. However, these solutions (1) do not have
a system-level consideration of power budget and therefore, do not
take into the account the trade-offs of allocating different amounts
of power to different jobs, and (2) they do not provide any feedback-
based dynamic functionalities. Some works have also proposed
heuristics-based approaches to meet multiple goals [5, 10], while
others have proposed monitoring-based solutions to manage the
application performance [23, 37]. However, these works have sim-
ilar issues as mentioned above related to lack of a global system
view to manage multiple jobs and lack of consideration for fairness
among the jobs. Several studies have also proposed the use of con-
trol theory to manage the power efficiency of applications, while
delivering performance guarantees [13, 17, 21, 37, 41, 50, 61, 62].
These studies highlight the effectiveness of control theory in achiev-
ing software and hardware targets in HPC applications. However,
these studies lack a universal system-level view and continuous
estimation of fairness; therefore, are unable to distribute power
amongst applications based on what the system can deliver.

5 Conclusion

This paper described design and evaluation of PERQ, which achieves
high system throughput while maintaining job-level fairness. PERQ
employs multi-input multi-output control theory which provides
theoretic guarantees about satisfying conflicting goals. Extensive
real-system and simulation evaluation demonstrate that PERQ im-
proves system throughput by up to 50% points, compared to the
fairness-oriented allocation policy, while remaining fair to jobs.

Acknowledgment: This research is supported by the Northeast-
ern University, Amazon AWS research program, and Massachusetts
Green High Performance Computing Center (MGHPCC). We are
thankful to anonymous reviewers for their feedback. We are espe-
cially thankful to Liana Fong for her detailed feedback and efforts
which helped us improve the quality of the paper significantly.

References

[1] 2018. Exascale Computing Project Proxy Applications:
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/.

[2] George Amvrosiadis, Jun Woo Park, et al. 2018. On the Diversity of Cluster Work-
loads and its Impact on Research Results. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18). 533-546.

[3] M Andersen, Joachim Dahl, et al. 2013. CVXOPT: A Python Package for Convex
Optimization. abel. ee. ucla. edu/cvxopt (2013).

=

[11]

[12]

[13]

[14]

[15]

[16]

(18]

[19

[20]
[21]
[22]

[23]

[24

[25]
[26]

[27]
[28

[29]

[30]

[31]
[32]

[33]

[34

[35]

Reza Azimi, Masoud Badiei, Xin Zhan, Na Li, and Sherief Reda. 2017. Fast
Decentralized Power Capping for Server Clusters.. In HPCA. 181-192.

Prasanna Balaprakash, Ananta Tiwari, et al. 2013. Multi Objective Optimization
of HPC Kernels for Performance, Power, and Energy. In International PMBS
Workshop. Springer, 239-260.

Alberto Bemporad, Francesco Borrelli, et al. 2000. Optimal Controllers for Hybrid
Systems: Stability and Piecewise Linear Explicit Form. In Decision and Control,
2000. Proceedings of the 39th IEEE Conference on, Vol. 2. IEEE, 1810-1815.
Sridutt Bhalachandra, Allan Porterfield, et al. 2017. Improving Energy Efficiency
in Memory-constrained Applications Using Core-specific Power Control. In
Proceedings of the Workshop on Energy Efficient Supercomputing. ACM, 6.
Abhishek Chandra, Pawan Goyal, and Prashant Shenoy. 2003. Quantifying the
benefits of resource multiplexing in on-demand data centers. Computer Science
Department Faculty Publication Series (2003), 20.

Hong Chen et al. 1998. A Quasi-Infinite Horizon Nonlinear Model Predictive
Control Scheme with Guaranteed Stability. Automatica 34, 10 (1998), 1205-1217.
Jee Choi, Marat Dukhan, et al. 2014. Algorithmic Time, Energy, and Power on
Candidate HPC Compute Building Blocks. In Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International. IEEE, 447-457.

Ryan Cochran, Can Hankendi, et al. 2011. Pack & Cap: Adaptive DVFS and
Thread Packing under Power Caps. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 175-185.

Howard David, Eugene Gorbatov, et al. 2010. RAPL: Memory Power Estimation
and Capping. In Proceedings of the 16th ACM/IEEE International Symposium on
Low Power Electronics and Design. ACM, 189-194.

Gokalp Demirci, Ivana Marincic, and Henry Hoffmann. 2018. A divide and
conquer algorithm for DAG scheduling under power constraints. In SC18: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 466-477.

Douglas W Doerfler. 2014. Trinity: Next-Generation Supercomputer for the ASC
Program. Technical Report. SNL, Albuquerque, NM (United States).

Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power provi-
sioning for a warehouse-sized computer. In ACM SIGARCH computer architecture
news, Vol. 35. ACM, 13-23.

Dror G Feitelson et al. 2014. Experience with using the parallel workloads archive.
7. Parallel and Distrib. Comput. 74, 10 (2014), 2967-2982.

Antonio Filieri, Henry Hoffmann, et al. 2015. Automated Multi-Objective Control
for Self-Adaptive Software Design. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering. ACM, 13-24.

Rong Ge, Xizhou Feng, et al. 2005. Performance-Constrained Distributed DVS
Scheduling for Scientific Applications on Power-Aware Clusters. In Supercom-
puting, 2005. Proceedings of the ACM/IEEE SC 2005 Conference. IEEE, 34-34.
Neha Gholkar, Frank Mueller, et al. 2016. Power Tuning HPC Jobs on Power-
Constrained Systems. In Proceedings of the 2016 International Conference on Par-
allel Architectures and Compilation. ACM, 179-191.

Neha Gholkar, Frank Mueller, et al. 2018. PShifter: Feedback-Based Dynamic
Power Shifting within HPC Jobs for Performance. In 2018 HPDC.

Henry Hoffmann. 2015. JouleGuard: Energy Guarantees for Approximate Appli-
cations. In Symposium on Operating Systems Principles. ACM, 198-214.

Connor Imes et al. 2015. Minimizing Energy under Performance Constraints
on Embedded Platforms: Resource Allocation Heuristics for Homogeneous and
Single-ISA Heterogeneous Multi-Cores. ACM SIGBED Review 11, 4 (2015), 49-54.
Connor Imes, Lars Bergstrom, et al. 2016. A Portable Interface for Runtime
Energy Monitoring. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 968-974.

Canturk Isci et al. 2006. An Analysis of Efficient Multi-Core Global Power
Management Policies: Maximizing Performance for a Given Power Budget. In
Symposium on Microarchitecture. IEEE, 347-358.

Melanie Kambadur and Martha A Kim. 2014. An Experimental Survey of Energy
Management Across the Stack. In ACM SIGPLAN Notices, Vol. 49. ACM, 329-344.
Jaimie Kelley et al. 2016. Adaptive power profiling for many-core HPC architec-
tures. In ICAC 2016. IEEE, 179-188.

Kalyan Kumaran. 2016. Introduction to Mira. In Code for Q Workshop.

Kien Le, Ricardo Bianchini, Thu D Nguyen, Ozlem Bilgir, and Margaret Martonosi.
2010. Capping the brown energy consumption of internet services at low cost.
In International Conference on Green Computing. IEEE, 3-14.

Jay H Lee. 2009. A Lecture on Model Predictive Control. Pan American Advanced
Studies Institute Program on Process Systems Engineering (2009).

Bo Li, Hung-Ching Chang, et al. 2014. The Power-Performance Tradeoffs of
the Intel Xeon Phi on HPC Applications. In Parallel & Distributed Processing
Symposium Workshops (IPDPSW), 2014 IEEE International. IEEE, 1448-1456.
Yang Li et al. 2019. A Scalable Priority-Aware Approach to Managing Data Center
Server Power. In HPCA 2019. IEEE, 701-714.

Harold Lim, Aman Kansal, and Jie Liu. 2011. Power budgeting for virtualized
data centers. In 2011 USENIX Annual Technical Conference (ATC).

Yanpei Liu, Guilherme Cox, et al. 2016. FastCap: An Efficient and Fair Algorithm
for Power Capping in Many-Core Systems. In Performance Analysis of Systems
and Software (ISPASS), 2016 IEEE International Symposium on. IEEE, 57-68.

L Ljung. 1999. System Identification-Theory for the User 2nd edition PTR Prentice-
Hall. Upper Saddle River, NJ (1999).

Thomas Ludwig and Manuel Dolz. 2014. Total Cost of Ownership in High
Performance Computing. In Talk at the University of Hamburg.

[36

(37]

(38]

[39

[40]

[41

=
&

S
&

=
&

[47

[48

[49]

[50

[51

[52]

[53

o
=

[57]

[58

(59

[60

[61

Olli Mammela et al. 2012. Energy-Aware Job Scheduler for High-Performance
Computing. Computer Science-Research and Development 27, 4 (2012), 265-275.
Ivana Marincic et al., Venkatram Vishwanath, and Henry Hoffmann. 2017.
PoLiMEr: An Energy Monitoring and Power Limiting Interface for HPC Ap-
plications. In Proceedings of the 5th E2SC Workshop. ACM, 7.

Steven Martin. 2017. Total Cost of Ownership and HPC System Procurement. In
Talk at the 2017 International Conference in Supercomputing.

David Q Mayne, James B Rawlings, et al. 2000. Constrained Model Predictive
Control: Stability and Optimality. Automatica 36, 6 (2000), 789-814.

David Meisner, Christopher M Sadler, Luiz André Barroso, Wolf-Dietrich Weber,
and Thomas F Wenisch. 2011. Power management of online data-intensive
services. In ACM SIGARCH Computer Architecture News, Vol. 39. ACM, 319-330.
Nikita Mishra, Connor Imes, et al. 2018. CALOREE: Learning Control for Pre-
dictable Latency and Low Energy. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 184-198.

Frank Mueller, Barry Rountree, et al. 2016. Power Tuning for HPC Jobs under
Manufacturing Variations. Technical Report. North Carolina State University.
Dept. of Computer Science.

Bin Nie et al. 2017. Characterizing temperature, power, and soft-error behaviors
in data center systems: Insights, challenges, and opportunities. In MASCOTS
2017.

Chandrakant D Patel and Amip J Shah. 2005. Cost model for planning, develop-
ment and operation of a data center.

Tapasya Patki et al. 2013. Exploring Hardware Overprovisioning in Power-
Constrained, High Performance Computing. In Proceedings of the International
Conference on Supercomputing. ACM, 173-182.

Tapasya Patki et al. 2015. Practical Resource Management in Power-Constrained,
High Performance Computing. In Proceedings of the Symposium on High-
Performance Parallel and Distributed Computing. ACM, 121-132.

Tapasya Patki et al. 2016. Economic Viability of Hardware Overprovisioning in
Power-Constrained High Performance Computing. In Proceedings of the Workshop
on Energy Efficient Supercomputing. IEEE Press, 8-15.

Steven Pelley, David Meisner, Pooya Zandevakili, Thomas F Wenisch, and Jack
Underwood. 2010. Power routing: dynamic power provisioning in the data center.
In ACM Sigplan Notices, Vol. 45. ACM, 231-242.

Tan R Petersen and Roberto Tempo. 2014. Robust Control of Uncertain Systems:
Classical Results and Recent Developments. Automatica 50, 5 (2014), 1315-1335.
Raghavendra Pradyumna Pothukuchi, Amin Ansari, et al. 2016. Using Mul-
tiple Input, Multiple Output Formal Control to Maximize Resource Efficiency
in Architectures. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual
International Symposium on. IEEE, 658-670.

Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang,
and Xiaoyun Zhu. 2008. No power struggles: Coordinated multi-level power
management for the data center. ACM SIGOPS Operating Systems Review 42, 2
(2008), 48-59.

Barry Rountree, Dong H Ahn, et al. 2012. Beyond DVFS: A First Look at Per-
formance under a Hardware-Enforced Power Bound. In Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW). IEEE, 947-953.
Ryuichi Sakamoto, Thang Cao, et al. 2017. Production Hardware Overprovision-
ing: Real-World Performance Optimization using an Extensible Power-Aware
Resource Management Framework. In Parallel and Distributed Processing Sympo-
sium (IPDPS), 2017 IEEE International. IEEE, 957-966.

Ryuichi Sakamoto, Tapasya Patki, et al. 2018. Analyzing Resource Trade-offs in
Hardware Overprovisioned Supercomputers. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 526-535.

Osman Sarood, Akhil Langer, et al. 2014. Maximizing Throughput of Overprovi-
sioned HPC Data Centers under a Strict Power Budget. In Supercomputing (SC).
IEEE Press, 807-818.

Kun Tang et al. 2016. Power-capping aware checkpointing: On the interplay
among power-capping, temperature, reliability, performance, and energy. In DSN
2016. IEEE, 311-322.

Akshat Verma, Puneet Ahuja, et al. 2008. Power-Aware Dynamic Placement of
HPC Applications. In Proceedings of the 22nd Annual International Conference on
Supercomputing. ACM, 175-184.

Xiaorui Wang, Ming Chen, Charles Lefurgy, and Tom W Keller. 2012. Ship: A
scalable hierarchical power control architecture for large-scale data centers. IEEE
Transactions on Parallel and Distributed Systems 23, 1 (2012), 168-176.

Will Whiteside, Shelby Funk, Aniruddha Marathe, and Barry Rountree. 2017.
PANN: Power Allocation via Neural Networks Dynamic Bounded-Power Allo-
cation in High Performance Computing. In Proceedings of the 5th International
Workshop on Energy Efficient Supercomputing. ACM, 8.

Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-Hong Hsu, Yun Jin, San-
jeev Kumar, Bin Li, Justin Meza, and Yee Jiun Song. 2016. Dynamo: facebook’s
data center-wide power management system. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). IEEE, 469-480.
Huazhe Zhang and Henry Hoffmann. 2016. Maximizing performance under a
power cap: A comparison of hardware, software, and hybrid techniques. ACM
SIGARCH Computer Architecture News 44, 2 (2016), 545-559.

Huazhe Zhang and Henry Hoffmann. 2018. Performance & energy tradeoffs for
dependent distributed applications under system-wide power caps. In Proceedings
of the 47th International Conference on Parallel Processing. ACM, 67.

