1. **Fundamental groups in geometry**
 - Fundamental groups of manifolds
 - Kähler groups
 - Quasi-projective groups
 - Complements of hypersurfaces
 - Line arrangements
 - Artin groups

2. **Comparing classes of groups**
 - Kähler groups vs other groups
 - Quasi-projective groups vs other groups
Every finitely presented group π can be realized as $\pi = \pi_1(M)$, for some smooth, compact, connected manifold M^n of dim $n \geq 4$.

M^n can be chosen to be orientable.

If n even, $n \geq 4$, then M^n can be chosen to be symplectic (Gompf).

If n even, $n \geq 6$, then M^n can be chosen to be complex (Taubes).

Requiring that $n = 3$ puts severe restrictions on the (closed) 3-manifold group $\pi = \pi_1(M^3)$.

A Kähler manifold is a compact, connected, complex manifold, with a Hermitian metric h such that $\omega = \text{im}(h)$ is a closed 2-form.

Smooth, complex projective varieties are Kähler manifolds.

A group π is called a Kähler group if $\pi = \pi_1(M)$, for some Kähler manifold M.

The group π is a projective group if M can be chosen to be a projective manifold.

The classes of Kähler and projective groups are closed under finite direct products and passing to finite-index subgroups.

Every finite group is a projective group. [Serre ~1955]
The Kähler condition puts strong restrictions on π, e.g.:

- π is finitely presented.
- $b_1(\pi)$ is even. [by Hodge theory]
- π is 1-formal [Deligne–Griffiths–Morgan–Sullivan 1975]
- π cannot split non-trivially as a free product. [Gromov 1989]

Problem: Are all Kähler groups projective groups?

Problem [Serre]: Characterize the class of projective groups.
A group π is said to be a *quasi-Kähler group* if $\pi = \pi_1(M\backslash D)$, where M is a Kähler manifold and D is a divisor.

The group π is a *quasi-projective group* if M can be chosen to be a projective manifold.

qK/qp groups are finitely presented. The classes of qK/qp groups are closed under finite direct products and passing to finite-index subgroups.

For a qp group π,
- $b_1(\pi)$ can be arbitrary (e.g., the free groups F_n).
- π may be non-1-formal (e.g., the Heisenberg group).
- π can split as a non-trivial free product (e.g., $F_2 = \mathbb{Z} \ast \mathbb{Z}$).

Problem: Are all quasi-Kähler groups quasi-projective groups?
Let X be a quasi-Kähler manifold, and $G = \pi_1(X)$. Let $\{L_\alpha\}_{\alpha}$ be the non-zero irreducible components of $\mathcal{R}^1(G)$. If G is 1-formal, then

- Each L_α is a linear subspace of $H^1(G, \mathbb{C})$.
- Each L_α is p-isotropic (i.e., restriction of $\cup G$ to L_α has rank p), with $\dim L_\alpha \geq 2p + 2$, for some $p = p(\alpha) \in \{0, 1\}$.
- If $\alpha \neq \beta$, then $L_\alpha \cap L_\beta = \{0\}$.
- $\mathcal{R}^1_k(G) = \{0\} \cup \bigcup_{\alpha : \dim L_\alpha > k + p(\alpha)} L_\alpha$.

Furthermore,

- If X is compact, then G is 1-formal, and each L_α is 1-isotropic.
- If $W_1(H^1(X, \mathbb{C})) = 0$, then G is 1-formal, and each L_α is 0-isotropic.
A subclass of quasi-projective groups consists of fundamental groups of complements of hypersurfaces in \mathbb{CP}^n,

$$\pi = \pi_1(\mathbb{CP}^n \setminus \{ f = 0 \}), \quad f \in \mathbb{C}[z_0, \ldots, z_n] \text{ homogeneous.}$$

All such groups are 1-formal. [Kohno 1983]

By the Lefschetz hyperplane sections theorem, $\pi = \pi_1(\mathbb{CP}^2 \setminus C)$, for some plane algebraic curve C.

Zariski asked Van Kampen to find presentations for such groups.

Using the Alexander polynomial, Zariski showed that π is not determined by the combinatorics of C (number and type of singularities), but also depends on the position of its singularities.

Problem (Zariski)

Is $\pi = \pi_1(\mathbb{CP}^2 \setminus C)$ residually finite, i.e., is the map to the profinite completion, $\pi \rightarrow \pi^{\text{alg}} := \lim_{G \leftarrow_{\text{f.i.}} \pi} \pi / G$, injective?
Even more special are the *arrangement groups*, i.e., the fundamental groups of complements of complex hyperplane arrangements (or, equivalently, complex line arrangements).

Let \mathcal{A} be an *arrangement of lines* in \mathbb{CP}^2, defined by a polynomial $f = \prod_{L \in \mathcal{A}} f_L$, with f_L linear forms so that $L = \mathbb{P}(\ker(f_L))$.

The combinatorics of \mathcal{A} is encoded in the *intersection poset*, $\mathcal{L}(\mathcal{A})$, with $\mathcal{L}_1(\mathcal{A}) = \{\text{lines}\}$ and $\mathcal{L}_2(\mathcal{A}) = \{\text{intersection points}\}$.
Let $U(\mathcal{A}) = \mathbb{C}P^2 \setminus \bigcup_{L \in \mathcal{A}} L$. The group $\pi = \pi_1(U(\mathcal{A}))$ has a finite presentation with

- Meridional generators x_1, \ldots, x_n, where $n = |\mathcal{A}|$, and $\prod x_i = 1$.
- Commutator relators $x_i \alpha_j(x_i)^{-1}$, where $\alpha_1, \ldots, \alpha_s \in P_n \subset \text{Aut}(F_n)$, and $s = |\mathcal{L}_2(\mathcal{A})|$.

Let $\gamma_1(\pi) = \pi$, $\gamma_2(\pi) = \pi' = [\pi, \pi]$, $\gamma_k(\pi) = [\gamma_{k-1}(\pi), \pi]$, be the lower central series of π. Then:

- $\pi_{ab} = \pi/\gamma_2$ equals \mathbb{Z}^{n-1}.
- π/γ_3 is determined by $L(\mathcal{A})$.
- π/γ_4 (and thus, π) is not determined by $L(\mathcal{A})$ (G. Rybnikov).

Problem (Orlik)

Is π torsion-free?

- Answer is yes if $U(\mathcal{A})$ is a $K(\pi, 1)$. This happens if the cone on \mathcal{A} is a simplicial arrangement (Deligne), or supersolvable (Terao).
Let $\Gamma = (V, E)$ be a finite, simple graph, and let $\ell: E \to \mathbb{Z}_{\geq 2}$ be an edge-labeling. The associated Artin group:

$$A_{\Gamma, \ell} = \langle v \in V \mid \underbrace{v w v \cdots}_{\ell(e)} = \underbrace{w v w \cdots}_{\ell(e)}, \text{ for } e = \{v, w\} \in E \rangle.$$

If (Γ, ℓ) is Dynkin diagram of type A_{n-1} with $\ell(\{i, i + 1\}) = 3$ and $\ell(\{i, j\}) = 2$ otherwise, then $A_{\Gamma, \ell}$ is the braid group B_n.

If $\ell(e) = 2$, for all $e \in E$, then

$$A_{\Gamma} = \langle v \in V \mid v w = w v \text{ if } \{v, w\} \in E \rangle.$$

is the right-angled Artin group associated to Γ.

$\Gamma \cong \Gamma' \iff A_{\Gamma} \cong A_{\Gamma'}$

[Kim–Makar-Limanov–Neggers–Roush 80 / Droms 87]
The corresponding Coxeter group,
\[W_{\Gamma, \ell} = A_{\Gamma, \ell} / \langle v^2 = 1 \mid v \in V \rangle , \]
fits into exact sequence \[1 \rightarrow P_{\Gamma, \ell} \rightarrow A_{\Gamma, \ell} \rightarrow W_{\Gamma, \ell} \rightarrow 1 . \]

THEOREM (Brieskorn 1971)

If \(W_{\Gamma, \ell} \) *is finite, then* \(G_{\Gamma, \ell} \) *is quasi-projective.*

Idea: let
- \(A_{\Gamma, \ell} = \) reflection arrangement of type \(W_{\Gamma, \ell} \) (over \(\mathbb{C} \))
- \(X_{\Gamma, \ell} = \mathbb{C}^n \setminus \bigcup_{H \in A_{\Gamma, \ell}} H \), where \(n = |A_{\Gamma, \ell}| \)
- \(P_{\Gamma, \ell} = \pi_1(X_{\Gamma, \ell}) \)

then:
\[A_{\Gamma, \ell} = \pi_1(X_{\Gamma, \ell}/W_{\Gamma, \ell}) = \pi_1(\mathbb{C}^n \setminus \{\delta_{\Gamma, \ell} = 0\}) \]

THEOREM (Kapovich–Millson 1998)

There exist infinitely many \((\Gamma, \ell)\) *such that* \(A_{\Gamma, \ell} \) *is not quasi-projective.*
Kähler groups vs other groups

Question (Donaldson–Goldman 1989)

Which 3-manifold groups are Kähler groups?

Reznikov gave a partial solution in 2002.

Theorem (Dimca–S. 2009)

Let G be the fundamental group of a closed 3-manifold. Then G is a Kähler group $\iff \pi$ is a finite subgroup of $O(4)$, acting freely on S^3.

- Idea of our proof: compare the resonance varieties of 3-manifolds to those of Kähler manifolds.

- By passing to a suitable index-2 subgroup of G, we may assume that the closed 3-manifold is orientable.
PROPOSITION

Let M be a closed, orientable 3-manifold. Then:

1. $H^1(M, \mathbb{C})$ is not 1-isotropic.
2. If $b_1(M)$ is even, then $\mathcal{R}_1^1(M) = H^1(M, \mathbb{C})$.

On the other hand, it follows from a previous theorem that:

PROPOSITION

Let M be a compact Kähler manifold with $b_1(M) \neq 0$. If $\mathcal{R}_1^1(M) = H^1(M, \mathbb{C})$, then $H^1(M, \mathbb{C})$ is 1-isotropic.

- If G is a Kähler, then $b_1(G)$ even.
- Thus, if G is both a 3-mfd group and a Kähler group $\implies b_1(G) = 0$.
- Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan’s property (T), as well as Perelman (2003), it follows that G is a finite subgroup of $O(4)$.
Alternative proofs have later been given by Kotschick (2012) and Biswas, Mj, and Seshadri (2012).

Theorem (Friedl–S. 2014)

Let N be a 3-manifold with non-empty, toroidal boundary. If $\pi_1(N)$ is a Kähler group, then $N \cong S^1 \times S^1 \times I$.

Subsequent generalization by Kotschick (dropping the toroidal boundary assumption): If G is both an infinite 3-manifold group and a Kähler group, then G is a surface group.
Theorem (DPS 2009)

Let Γ be a finite simple graph, and let A_Γ be the corresponding RAAG. The following are equivalent:

1. A_Γ is a Kähler group.
2. A_Γ is a free abelian group of even rank.
3. Γ is a complete graph on an even number of vertices.

Theorem (S. 2011)

Let A be an arrangement of lines in \mathbb{CP}^2, with group $\pi = \pi_1(U(A))$. The following are equivalent:

1. π is a Kähler group.
2. π is a free abelian group of even rank.
3. A consists of an odd number of lines in general position.
Let π be the fundamental group of a closed, orientable 3-manifold. Assume π is 1-formal. Then the following are equivalent:

1. $m(\pi) \cong m(\pi_1(X))$, for some quasi-projective manifold X.
2. $m(\pi) \cong m(\pi_1(N))$, where N is either S^3, $\#^n S^1 \times S^2$, or $S^1 \times \Sigma_g$.

Let N be a 3-mfd with empty or toroidal boundary. If $\pi_1(N)$ is a quasi-projective group, then all prime components of N are graph manifolds.

In particular, the fundamental group of a hyperbolic 3-manifold with empty or toroidal boundary is never a qp-group.
Comparing classes of groups

Comparing classes of groups

Quasi-projective groups vs other groups

Theorem (DPS 2009)

A right-angled Artin group A_{Γ} is a quasi-projective group if and only if Γ is a complete multipartite graph $K_{n_1, \ldots, n_r} = \overline{K}_{n_1} \ast \cdots \ast \overline{K}_{n_r}$, in which case $A_{\Gamma} = F_{n_1} \times \cdots \times F_{n_r}$.

Theorem (S. 2011)

Let $\pi = \pi_1(U(\mathcal{A}))$ be an arrangement group. The following are equivalent:

1. π is a RAAG.
2. π is a finite direct product of finitely generated free groups.
3. $G(\mathcal{A})$ is a forest.

Here $G(\mathcal{A})$ is the ‘multiplicity’ graph, with

- vertices: points $P \in L_2(\mathcal{A})$ with multiplicity at least 3;
- edges: $\{P, Q\}$ if $P, Q \in L$, for some $L \in \mathcal{A}$.