1. Resonance varieties of CDGAs
 - Commutative differential graded algebras
 - Resonance varieties
 - Tangent cone inclusion

2. Resonance varieties of spaces
 - Algebraic models for spaces
 - Germs of jump loci
 - Tangent cones and exponential maps
 - The tangent cone theorem
 - Detecting non-formality

3. Infinitesimal finiteness obstructions
 - Spaces with finite models
 - Associated graded Lie algebras
 - Holonomy Lie algebras
 - Malcev Lie algebras
 - Finiteness obstructions for groups
Let $A = (A^\bullet, d)$ be a commutative, differential graded algebra over a field \mathbb{k} of characteristic 0. That is:

- $A = \bigoplus_{i \geq 0} A^i$, where A^i are \mathbb{k}-vector spaces.
- The multiplication $\cdot : A^i \otimes A^j \rightarrow A^{i+j}$ is graded-commutative, i.e., $ab = (-1)^{|a||b|} ba$ for all homogeneous a and b.
- The differential $d : A^i \rightarrow A^{i+1}$ satisfies the graded Leibnitz rule, i.e., $d(ab) = d(a)b + (-1)^{|a|} a d(b)$.

A CDGA A is of \textit{finite-type} (or \textit{q-finite}) if

- it is connected (i.e., $A^0 = \mathbb{k} \cdot 1$);
- $\dim_{\mathbb{k}} A^i$ is finite for $i \leq q$.

Let $H^i(A) = \ker(d: A^i \rightarrow A^{i+1})/\mathrm{im}(d: A^{i-1} \rightarrow A^i)$. Then $H^\bullet(A)$ inherits an algebra structure from A.
A cdga morphism $\varphi: A \to B$ is both an algebra map and a cochain map. Hence, it induces a morphism $\varphi^*: H^\bullet(A) \to H^\bullet(B)$.

A map $\varphi: A \to B$ is a quasi-isomorphism if φ^* is an isomorphism. Likewise, φ is a q-quasi-isomorphism (for some $q \geq 1$) if φ^* is an isomorphism in degrees $\leq q$ and is injective in degree $q + 1$.

Two cdgas, A and B, are (q)-equivalent (\sim_q) if there is a zig-zag of (q)-quasi-isomorphisms connecting A to B.

A cdga A is formal (or just q-formal) if it is (q)-equivalent to $(H^\bullet(A), d = 0)$.

Since A is connected and $d(1) = 0$, we have $Z^1(A) = H^1(A)$.

For each $a \in Z^1(A)$, we construct a cochain complex,

$$(A^\bullet, \delta_a): \ A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u + d(u)$, for all $u \in A^i$.

The resonance varieties of A are the sets

$$\mathcal{R}_k^i(A) = \{ a \in H^1(A) \mid \dim H^i(A^\bullet, \delta_a) \geq k \}.$$

If A is q-finite, then $\mathcal{R}_k^i(A)$ are algebraic varieties for all $i \leq q$.

If A is a CDGA (so that $d = 0$), these varieties are homogeneous subvarieties of $H^1(A) = A^1$.
Fix a k-basis $\{e_1, \ldots, e_r\}$ for $H^1(A)$, and let $\{x_1, \ldots, x_r\}$ be the dual basis for $H_1(A) = (H^1(A))^*$.

Identify $\text{Sym}(H_1(A))$ with $S = k[x_1, \ldots, x_r]$, the coordinate ring of the affine space $H^1(A)$.

Define a cochain complex of free S-modules, $L(A) := (A^* \otimes_k S, \delta)$,

$$
\cdots \longrightarrow A^i \otimes S \overset{\delta^i}{\longrightarrow} A^{i+1} \otimes S \overset{\delta^{i+1}}{\longrightarrow} A^{i+2} \otimes S \longrightarrow \cdots,
$$

where $\delta^i(u \otimes f) = \sum_{j=1}^n e_j u \otimes fx_j + d u \otimes f$.

The specialization of $(A \otimes_k S, \delta)$ at $a \in A^1$ coincides with (A, δ_a).

Hence, $R^i_k(A)$ is the zero-set of the ideal generated by all minors of size $b_i(A) - k + 1$ of the block-matrix $\delta^{i+1} \oplus \delta^i$.

In particular, $R^1_k(A) = V(I_{r-k}(\delta^1))$, the zero-set of the ideal of codimension k minors of δ^1.
Example (Exterior Algebra)

Let $E = \bigwedge V$, where $V = \mathbb{k}^n$, and $S = \text{Sym}(V)$. Then $L(E)$ is the Koszul complex on V. E.g., for $n = 3$:

$$
\delta^1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad \quad \delta^2 = \begin{pmatrix} x_2 & x_3 & 0 \\ -x_1 & 0 & x_3 \\ 0 & -x_1 & -x_2 \end{pmatrix}
$$

$$
\begin{array}{c}
S \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
S^3 \rightarrow S
\end{array}
$$

Hence,

$$
\mathcal{R}^i_k(E) = \begin{cases}
\{0\} & \text{if } k \leq \binom{n}{i}, \\
\emptyset & \text{otherwise}.
\end{cases}
$$
Example (Non-zero resonance)

Let $A = \wedge (e_1, e_2, e_3)/\langle e_1 e_2 \rangle$, and set $S = \mathbb{k}[x_1, x_2, x_3]$. Then

$$\delta^1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad \delta^2 = \begin{pmatrix} x_3 & 0 & -x_1 \\ 0 & x_3 & -x_2 \end{pmatrix}$$

$L(A) : S \to S^3 \to S^2$.

$$\mathcal{R}_k^1(A) = \begin{cases} \{x_3 = 0\} & \text{if } k = 1, \\
\{0\} & \text{if } k = 2 \text{ or } 3, \\
\emptyset & \text{if } k > 3. \end{cases}$

Example (Non-linear resonance)

Let $A = \wedge (e_1, \ldots, e_4)/\langle e_1 e_3, e_2 e_4, e_1 e_2 + e_3 e_4 \rangle$. Then

$$\delta^1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \quad \delta^2 = \begin{pmatrix} x_4 & 0 & 0 & -x_1 \\ 0 & x_3 & -x_2 & 0 \\ -x_2 & x_1 & x_4 & -x_3 \end{pmatrix}$$

$L(A) : S \to S^4 \to S^3$.

$$\mathcal{R}_1^1(A) = \{x_1 x_2 + x_3 x_4 = 0\}$
Resonance varieties of CDGAs

Example (Non-homogeneous resonance)

- Let $A = \wedge(a, b)$ with $d\ a = 0$, $d\ b = b \cdot a$.
- $H^1(A) = \mathbb{C}$, generated by a. Set $S = \mathbb{C}[x]$. Then:

$$L(A) : S \xrightarrow{\delta^1 = \begin{pmatrix} 0 \\ x \end{pmatrix}} S^2 \xrightarrow{\delta^2 = (x-1 \ 0)} S \ .$$

- Hence, $\mathcal{R}^1(A) = \{0, 1\}$, a non-homogeneous subvariety of \mathbb{C}.
- Let A' be the sub-CDGA generated by a. The inclusion map, $A' \hookrightarrow A$, induces an isomorphism in cohomology.
- But $\mathcal{R}^1(A') = \{0\}$, and so the resonance varieties of A and A' differ, although A and A' are quasi-isomorphic.

Proposition

If $A \simeq_q A'$, then $\mathcal{R}^i_k(A)_{(0)} \cong \mathcal{R}^i_k(A')_{(0)}$, for all $i \leq q$ and $k \geq 0$.

Cohomology jump loci

Alex Suciu (Northeastern)
Theorem (Budur–Rubio, Denham–S. 2018)

If A is a connected k-CDGA A with locally finite cohomology, then

$$\text{TC}_0(\mathcal{R}_k^i(A)) \subseteq \mathcal{R}_k^i(H^\bullet(A)).$$

In general, we cannot replace $\text{TC}_0(\mathcal{R}_k^i(A))$ by $\mathcal{R}_k^i(A)$.

Example

- Let $A = \wedge(a, b)$ with $\text{d}a = 0$ and $\text{d}b = b \cdot a$.
- Then $H^\bullet(A) = \wedge(a)$, and so $\mathcal{R}_1^1(A) = \{0\}$.
- Hence $\mathcal{R}_1^1(A) = \{0, 1\}$ is *not* contained in $\mathcal{R}_1^1(A)$, though $\text{TC}_0(\mathcal{R}_1^1(A)) = \{0\}$ is.
In general, the inclusion $\mathcal{TC}_0(\mathcal{R}_k^i(A)) \subseteq \mathcal{R}_k^i(H^\bullet(A))$ is strict.

Example

- Let $A = \bigwedge (a, b, c)$ with $d\ a = d\ b = 0$ and $d\ c = a \wedge b$.

- Writing $S = \mathbb{k}[x, y]$, we have:

 $\delta^1 = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ \quad $\delta^2 = \begin{pmatrix} y - x & 1 \\ 0 & 0 & -x \\ 0 & 0 & -y \end{pmatrix}$

 $L(A) : S \xrightarrow{} S^3 \xrightarrow{} S^3$.

- Hence $\mathcal{R}_1^1(A) = \{0\}$.

- But $H^\bullet(A) = \bigwedge (a, b)/(ab)$, and so $\mathcal{R}_1^1(H^\bullet(A)) = \mathbb{k}^2$.
Given any space X, there is an associated Sullivan \mathbb{Q}-cdga, $A_{PL}(X)$, such that $H^\bullet(A_{PL}(X)) = H^\bullet(X, \mathbb{Q})$.

We say X is q-finite if X has the homotopy type of a connected CW-complex with finite q-skeleton, for some $q \geq 1$.

An algebraic (q-)model (over k) for X is a k-cgda (A, d) which is (q-) equivalent to $A_{PL}(X) \otimes_{\mathbb{Q}} k$.

If M is a smooth manifold, then $\Omega_{dR}(M)$ is a model for M (over \mathbb{R}).

Examples of spaces having finite-type models include:

- Formal spaces (such as compact Kähler manifolds, hyperplane arrangement complements, toric spaces, etc).
- Smooth quasi-projective varieties, compact solvmanifolds, Sasakian manifolds, etc.
Germs of Jump Loci

Theorem (Dimca–Papadima 2014)

Let X be a q-finite space, and suppose X admits a q-finite, q-model A. Then the map $\exp : H^1(X, \mathbb{C}) \to H^1(X, \mathbb{C}^*)$ induces a local analytic isomorphism $H^1(A)_{(0)} \to \text{Char}(X)_{(1)}$, which identifies the germ at 0 of $R^i_k(A)$ with the germ at 1 of $V^i_k(X)$, for all $i \leq q$ and $k \geq 0$.

Corollary

If X is a q-formal space, then $V^i_k(X)_{(1)} \cong R^i_k(X)_{(0)}$, for $i \leq q$ and $k \geq 0$.

- A precursor to corollary can be found in work of Green, Lazarsfeld, and Ein on cohomology jump loci of compact Kähler manifolds.
- The case when $q = 1$ was first established in [DPS 2019].
Tangent cones and exponential maps

The map \(\exp : \mathbb{C}^n \to (\mathbb{C}^\times)^n, (z_1, \ldots, z_n) \mapsto (e^{z_1}, \ldots, e^{z_n}) \) is a homomorphism taking 0 to 1.

For a Zariski-closed subset \(W = V(I) \) inside \((\mathbb{C}^\times)^n\), define:
- The tangent cone at 1 to \(W \) as \(TC_1(W) = V(\mathrm{in}(I)) \).
- The exponential tangent cone at 1 to \(W \) as

\[
\tau_1(W) = \{ z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \forall \lambda \in \mathbb{C} \}
\]

These sets are homogeneous subvarieties of \(\mathbb{C}^n \), which depend only on the analytic germ of \(W \) at 1.

Both commute with finite unions and arbitrary intersections.

\(\tau_1(W) \subseteq TC_1(W) \).
- = if all irred components of \(W \) are subtori.
- \(\neq \) in general.

(DPS 2009) \(\tau_1(W) \) is a finite union of rationally defined subspaces.
The tangent cone theorem

Let X be a connected CW-complex with finite q-skeleton.

Theorem (Libgober 2002, DPS 2009)

For all $i \leq q$ and $k \geq 0$,

$$
\tau_1(\mathcal{V}_k^i(X)) \subseteq TC_1(\mathcal{V}_k^i(X)) \subseteq R_k^i(X).
$$

Theorem (DPS-2009, DP-2014)

Suppose X is a q-formal space. Then, for all $i \leq q$ and $k \geq 0$,

$$
\tau_1(\mathcal{V}_k^i(X)) = TC_1(\mathcal{V}_k^i(X)) = R_k^i(X).
$$

In particular, all irreducible components of $R_k^i(X)$ are rationally defined linear subspaces of $H^1(X, \mathbb{C})$.
Detecting non-formality

Example

Let $\pi = \langle x_1, x_2 \mid [x_1, [x_1, x_2]] \rangle$. Then $V_1^1(\pi) = \{ t_1 = 1 \}$, and so

$$\tau_1(V_1^1(\pi)) = TC_1(V_1^1(\pi)) = \{ x_1 = 0 \}.$$

On the other hand, $R_1^1(\pi) = \mathbb{C}^2$, and so π is not 1-formal.

Example

Let $\pi = \langle x_1, \ldots, x_4 \mid [x_1, x_2], [x_1, x_4][x_2^{-2}, x_3], [x_1^{-1}, x_3][x_2, x_4] \rangle$. Then

$$R_1^1(\pi) = \{ z \in \mathbb{C}^4 \mid z_1^2 - 2z_2^2 = 0 \}.$$

This is a quadric hypersurface which splits into two linear subspaces over \mathbb{R}, but is irreducible over \mathbb{Q}. Thus, π is not 1-formal.
Example

Let π be a finitely presented group with $\pi_{ab} = \mathbb{Z}^3$ and

$$\mathcal{V}_1^1(\pi) = \{(t_1, t_2, t_3) \in (\mathbb{C}^*)^3 \mid (t_2 - 1) = (t_1 + 1)(t_3 - 1)\},$$

This is a complex, 2-dimensional torus passing through the origin, but this torus does not embed as an algebraic subgroup in $(\mathbb{C}^*)^3$. Indeed,

$$\tau_1(\mathcal{V}_1^1(\pi)) = \{x_2 = x_3 = 0\} \cup \{x_1 - x_3 = x_2 - 2x_3 = 0\}.$$

Hence, π is not 1-formal.
Example

- Let $\text{Conf}_n(E)$ be the configuration space of n labeled points of an elliptic curve $E = \Sigma_1$.

- Using the computation of $H^\bullet(\text{Conf}_n(\Sigma_g), \mathbb{C})$ by Totaro (1996), we find that $\mathcal{R}_1(\text{Conf}_n(E))$ is equal to

$$\left\{(x, y) \in \mathbb{C}^n \times \mathbb{C}^n \mid \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i = 0, \quad x_i y_j - x_j y_i = 0, \text{ for } 1 \leq i < j \leq n \right\}$$

- For $n \geq 3$, this is an irreducible, non-linear variety (a rational normal scroll). Hence, $\text{Conf}_n(E)$ is not 1-formal.
THEOREM (EXPONENTIAL AX–LINDEMANN THEOREM)

Let $V \subseteq \mathbb{C}^n$ and $W \subseteq (\mathbb{C}^*)^n$ be irreducible algebraic subvarieties.

1. Suppose $\dim V = \dim W$ and $\exp(V) \subseteq W$. Then V is a translate of a linear subspace, and W is a translate of an algebraic subtorus.

2. Suppose the exponential map $\exp: \mathbb{C}^n \to (\mathbb{C}^*)^n$ induces a local analytic isomorphism $V_{(0)} \to W_{(1)}$. Then $W_{(1)}$ is the germ of an algebraic subtorus.

THEOREM (BUDUR–WANG 2017)

If X is a q-finite space which admits a q-finite q-model, then, for all $i \leq q$ and $k \geq 0$, the irreducible components of $\mathcal{V}_k^i(X)$ passing through 1 are algebraic subtori of $\text{Char}(X)$.
Example

Let G be a f.p. group with $G_{ab} = \mathbb{Z}^n$ and $\mathcal{V}_1^1(G) = \{ t \in (\mathbb{C}^\times)^n \mid \sum_{i=1}^n t_i = n \}$. Then G admits no 1-finite 1-model.

Theorem (Papadima–S. 2017)

Suppose X is $(q + 1)$ finite, or X admits a q-finite q-model. Let $\mathcal{M}_q(X)$ be Sullivan’s q-minimal model of X. Then $b_i(\mathcal{M}_q(X)) < \infty$, $\forall i \leq q + 1$.

Corollary

Let G be a f.g. group. Assume that either G is finitely presented, or G has a 1-finite 1-model. Then $b_2(\mathcal{M}_1(G)) < \infty$.

Example

Let $G = F_n / F_n''$ with $n \geq 2$. We have $\mathcal{V}_1^1(G) = \mathcal{V}_1^1(F_n) = (\mathbb{C}^\times)^n$, and so G passes the Budur–Wang test. But $b_2(\mathcal{M}_1(G)) = \infty$, and so G admits no 1-finite 1-model (and is not finitely presented).
The *lower central series* of a group G is defined inductively by

$$\gamma_1 G = G \quad \text{and} \quad \gamma_{k+1} G = [\gamma_k G, G].$$

This forms a filtration of G by characteristic subgroups. The LCS quotients, $\gamma_k G/\gamma_{k+1} G$, are abelian groups.

The group commutator induces a graded Lie algebra structure on

$$\text{gr}(G, k) = \bigoplus_{k \geq 1} (\gamma_k G/\gamma_{k+1} G) \otimes \mathbb{Z} k.$$

Assume G is finitely generated. Then $\text{gr}(G)$ is also finitely generated (in degree 1) by $\text{gr}_1(G) = H_1(G, k)$.

For instance, $\text{gr}(F_n)$ is the free graded Lie algebra $\mathbb{L}_n := \text{Lie}(k^n)$.

Alex Suciu (Northeastern)

Cohomology jump loci

MIMS Summer School 2018
Holonomy Lie algebras

- Let A be a 1-finite cdga. Set $A_i = (A^i)^* = \text{Hom}_k(A^i, k)$.

- Let $\mu^*: A_2 \to A_1 \wedge A_1$ be the dual to the multiplication map $\mu: A^1 \wedge A^1 \to A^2$.

- Let $d^*: A_2 \to A_1$ be the dual of the differential $d: A^1 \to A^2$.

- The holonomy Lie algebra of A is the quotient
 \[\mathfrak{h}(A) = \text{Lie}(A_1)/\langle \text{im}(\mu^* + d^*) \rangle. \]

- For a f.g. group G, set $\mathfrak{h}(G) := \mathfrak{h}(H^\bullet(G, k))$. There is then a canonical surjection $\mathfrak{h}(G) \to \text{gr}(G)$, which is an isomorphism precisely when $\text{gr}(G)$ is quadratic.
MALCEV LIE ALGEBRAS

The group-algebra kG has a natural Hopf algebra structure, with comultiplication $\Delta(g) = g \otimes g$ and counit $\varepsilon: kG \rightarrow k$. Let $I = \ker \varepsilon$.

(Quillen 1968) The I-adic completion of the group-algebra, $\hat{kG} = \lim_{\leftarrow k} kG/I^k$, is a filtered, complete Hopf algebra.

An element $x \in \hat{kG}$ is called primitive if $\hat{\Delta}x = x \hat{\otimes} 1 + 1 \hat{\otimes} x$. The set of all such elements, with bracket $[x, y] = xy - yx$, and endowed with the induced filtration, is a complete, filtered Lie algebra.

We then have $m(G) \cong \text{Prim}(\hat{kG})$ and $\text{gr}(m(G)) \cong \text{gr}(G)$.

(Sullivan 1977) G is 1-formal $\iff m(G)$ is quadratic, namely:

$$m(G) = \mathfrak{h}(\widehat{H^\bullet(G)}, k).$$

ALEX SUCIU (NORTHEASTERN)
Theorem (PS 2017)

A f.g. group G admits a 1-finite 1-model A if and only if $m(G)$ is the lcs completion of a finitely presented Lie algebra, namely,

$$m(G) \cong \hat{h}(A).$$

Theorem (PS 2017)

Let G be a f.g. group which has a free, non-cyclic quotient. Then:

- G/G'' is not finitely presentable.
- G/G'' does not admit a 1-finite 1-model.