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Do the following six problems. Give proofs or justifications for each statement you make.
Draw pictures when needed. Be as clear and concise as possible. Show all your work.

1. Let X be a Hausdorff space, and let A be a subspace of X. Suppose the inclusion map,
i : A→ X, admits a retraction, i.e., suppose there is a continuous map r : X → A such
that r(i(a)) = a, for every a ∈ A. Show that A is a closed subset of X.

2. Let p : X → Y be a quotient map. Suppose Y is connected, and, for each y ∈ Y , the
subspace p−1({y}) is connected. Show that X is connected.

3. Let Y = {(z1, z2) ∈ C2 | z1 6= z2}. Let X = Y/σ be the quotient space of Y by the
involution σ permuting the coordinates. Let p : Y → X be the projection map.

(a) Find the fundamental group of Y , based at a point y0 ∈ Y .

(b) Find the fundamental group of X, based at x0 = p(y0).

(c) Determine the induced homomorphim p] : π1(Y, y0)→ π1(X,x0).

4. Let A and B be subsets of the sphere Sn, n ≥ 2. Show:

(a) If A and B are closed, disjoint, and neither separates Sn, then A ∪ B does not
separate Sn.

(b) If A and B are connected, open, and A ∪B = Sn, then A ∩B is connected.

5. Let B = S1∨S1 be the wedge of two circles, and choose the wedge point b0 as basepoint.

(a) Construct a two-fold covering map p : E → B, with E connected.

(b) Find a subgroup H of π1(B, b0) corresponding to p. Show that H is a normal
subgroup. Describe the group of deck transformations of p.

(c) Pick e0 ∈ p−1(b0), and determine the induced homomorphism p] : π1(E, e0) →
π1(B, b0).

(d) Determine the induced homomorphism p∗ : H1(E;Z)→ H1(B;Z).

6. Let X = RP2×K be the product of the real projective plane with the Klein bottle.

(a) Find a CW-decomposition of X.

(b) Determine the chain complex (C•(X), ∂) associated to this cell decomposition.

(c) Use this chain complex to compute the homology groups H∗(X,Z).


