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1. Introduction

1.1. Rational homotopy type

Homotopy theory is the study of topological spaces up to homotopy equivalences. Typical
examples of homotopy type invariants of a space - are the homology groups �= (-, Z)
and the homotopy groups c= (-). The question whether one can reconstruct the homo-
topy type of a space from homological data goes back to the beginnings of Algebraic
Topology. Poincaré realized that homology is not enough: for a path-connected space - ,
the first homology group, �1 (-, Z), only records the abelianization of the fundamental
group, c1(-). Even for simply-connected spaces, homology by itself fails to detect maps
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2 A. I. Suciu

such as the Hopf map, (3 → (2. On the other hand, if one considers the de Rham alge-
bra of differential forms, one can reconstitute in a purely algebraic fashion all the higher
homotopy groups of (=, modulo torsion.

As founded by Quillen [119] and Sullivan [137], rational homotopy theory is the study
of rational homotopy types of spaces. Instead of considering the groups �= (-, Z) and
c= (-), one considers the rational homology groups �= (-,Q) and the rational homotopy
groups c= (-) ⊗ Q. These objects are Q-vector spaces, and hence the torsion information
is lost, yet this is compensated by the fact that computations are easier in this setting.

1.2. Models for spaces and groups

In his seminal paper, [137], Sullivan attached in a functorial way to every space - a com-
mutative differential graded algebra over Q, denoted �PL (-). This cdga is constructed
from piecewise polynomial rational forms and is weakly equivalent (through dgas) with
the cochain algebra (�∗ (-,Q), 3) so that, under the resulting identification of graded alge-
bras, �∗ (�PL (-)) � �∗ (-,Q), the induced homomorphisms in cohomology correspond.

We say that two cdgas � and � are weakly equivalent (written � ≃ �) if there is a zig-
zag of cdga maps inducing isomorphisms in cohomology and connecting � to �. If those
maps only induce isomorphisms in degree at most @ (for some @ ≥ 0) and monomorphisms
in degree @ + 1, we say � and � are @-equivalent (written � ≃@ �)

Let k be a coefficient field of characteristic 0. We say that a k-cdga (�, 3) is a model for
a space - if � ≃ �PL(-) ⊗Q k, and likewise for a @-model. For instance, if - is a smooth
manifold, de Rham’s algebra Ω∗dR(-) is a model for - over R, leading to the following
basic principle in rational homotopy theory: “The manner in which a closed form which
is zero in cohomology actually becomes exact contains geometric information,” cf. [37].

Given a connected cdga �, Sullivan constructed a minimal model for it, d : M(�) →
A, where d is a quasi-isomorphism and M(�) is a cdga obtained by iterated Hirsch
extensions, starting from k, so that its differential is decomposable. These properties
uniquely characterize the minimal model of � (up to isomorphism). The @-minimal mod-
elsM@ (�) are similarly defined for all @ ≥ 0; they are generated by elements of degrees at
most @, and the structural morphisms d@ : M@ (�) → � are only @-quasi-isomorphisms.

A minimal model for a connected space - , denotedM(-), is a minimal model for
the Sullivan algebra �PL (-). The isomorphism type ofM(-) is uniquely defined by the
rational homotopy type of - . The @-minimal models M@ (-) are defined analogously;
moreover, if � is a finitely generated group, we setM1(�) =M1( (�, 1)). When - is a
nilpotent CW-complex with finite Betti numbers, Sullivan [137] showed that c=(-) ⊗ Q �
(+=)∨ for all = ≥ 2, where + =

⊕
= +

= andM(-) =
(∧
+, 3) is a minimal model for -

over Q.

1.3. Formality

As formulated in [137], [37], the notion of formality plays a central role in rational homo-
topy theory. We say that a path-connected space - is formal if its Sullivan algebra, �PL (-),
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is weakly equivalent to its cohomology algebra, �∗ (-,Q), endowed with the zero differ-
ential. The notion of @-formality (for some @ ≥ 0) is defined accordingly. In general, partial
formality is a much weaker property than (full) formality; nevertheless, if �≥@+2(- ;Q) =
0, then - is @-formal if and only if - is formal, see [91]. One may also talk about (@-)
formality over a field k, but it turns out that all these formality notions are independent of
the choice of the coefficient field, as long as char(k) = 0.

Various conditions on the connectivity of the space or the structure of its cohomology
algebra guarantee formality. For instance, if - is a :-connected CW-complex (: ≥ 1) of
dimension = and = ≤ 3: + 1, then - is formal, cf. [124]; moreover, if - is a closed manifold
of dimension =, the conclusion remains valid for = ≤ 4: + 2, cf. [99] Also, if �∗ (-,Q) is
the quotient of a free cga by an ideal generated by a regular sequence, then - is formal,
cf. [137].

A classical obstruction to formality is provided by the Massey products (of order 3
and higher): If a space - is formal, then all Massey products in the cohomology algebra
�∗ (-,Q) vanish—in fact, vanish uniformly. Furthermore, if - is @-formal, for some @ ≥ 1,
then all Massey products in �≤@+1(-,Q) vanish.

A simply-connected space (or, more generally, a nilpotent space) - is formal if its
rational homotopy type is determined by �∗(-,Q). In the general case, the weaker 1-
formality property allows one to reconstruct the rational pro-unipotent completion of the
fundamental group, solely from the cup products of degree 1 cohomology classes. Formal
spaces lend themselves to various algebraic computations that provide valuable homotopy
information. For instance, a result of Papadima–Yuzvinsky [115], which is valid for all
formal spaces - , states: The Bousfield–Kan completion Q∞- is aspherical if and only if
�∗ (-,Q) is a Koszul algebra.

1.4. Finiteness in cdga models

A recurring theme in topology is to determine the geometric and homological finiteness
properties of spaces and groups. A prototypical such problem is to determine whether a
path-connected space - is homotopy equivalent to a CW-complex with finite @-skeleton,
for some 1 ≤ @ ≤ ∞, in which case we say - is @-finite. Another question is to decide
whether a group � is finitely generated, and if so, whether it admits a finite presentation;
more generally, whether it has a classifying space  (�, 1) with finite @-skeleton.

A fruitful approach to this type of question is to compare the finiteness properties
of the spaces or groups under consideration to the corresponding finiteness properties
of algebraic models for such spaces and groups. By analogy with the aforementioned
topological notion, we say that a k-cdga � is @-finite if it is connected (i.e., �0 = k · 1)
and dim �8 < ∞ for 8 ≤ @.

A natural question then is: When does a @-finite space - admit a @-finite @-model
(�, 3)? A necessary criterion is given in [113]: If a space - does admit such a model, then
dim�8 (M@ (-)) < ∞, for all 8 ≤ @ + 1. For instance, if � = �=/� ′′= is the free metabelian
group of rank = ≥ 2 then 12(M1(�)) = ∞, and so � admits no 1-finite 1-model. Other
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finiteness criteria, based on the nature of the cohomology jump loci (see [113], [128]), are
discussed below.

1.5. Malcev and holonomy Lie algebras

In his landmark paper on rational homotopy theory, Quillen [119] defined the Malcev
Lie algebra, m(�), of a finitely generated group � as the (complete, filtered) Lie algebra
of primitive elements in the �-adic completion of the group algebra Q[�], where � is
the augmentation ideal. The associated graded Lie algebra with respect to this filtration,
gr(m(�)), is isomorphic to gr(�, Q) the rational graded Lie algebra associated to the
lower central series filtration of �, cf. [118].

As shown by Sullivan [137] (see also [30], [66]), the Lie algebra dual to M1(�) is
isomorphic to the Malcev Lie algebra m(�). It follows that � is 1-formal if and only
if m(�) is the LCS completion of a finitely generated, quadratic Lie algebra. A weaker
condition was given in [132]: we say that � is filtered formal if m(�) is the completion of
gr(�,Q) with respect to its LCS filtration. As shown in [133], this condition is equivalent
to the existence of a Taylor expansion, � → ĝr(Q[�]).

Now suppose� has a 1-finite 1-model (�, 3) overQ. Building on a classical construc-
tion of K.-T. Chen [31], the holonomy Lie algebra h(�) was defined in [92] as the quotient
of the free Lie algebra on the dual vector space �1 = (�1)∨ by the ideal generated by the
image of the map (3 + `)∨, where 3 : �1 → �2 is the differential and ` : �1 ∧ �1 → �2

is the multiplication map. Then, as shown in [13], [113] (generalizing a result from [16]),
the Malcev Lie algebra m(�) is isomorphic to the LCS completion of h(�). Moreover,
the following complete finiteness criterion in degree 1 was given in [113]: A finitely gen-
erated group � admits a 1-finite 1-model if and only if m(�) is the LCS completion of a
finitely presented Lie algebra.

1.6. Cohomology jump loci

The cohomology jump loci of a space - are of two basic types: the characteristic varieties,
V 8
:
(-), defined in terms of homology with coefficients in rank one local systems, and the

resonance varieties, R8
:
(-) or R8

:
(�), constructed from information encoded in either the

cohomology ring �∗ (-,C), or in a cdga model � for - .
The characteristic varieties and the related Alexander invariants of spaces and groups

have their origin in the study of the Alexander polynomials of knots and links. The basic
topological idea in defining these invariants is to take the homology of the maximal abelian
cover of a connected CW-complex - and view it as a module over the group ring of
�1 (-, Z). One then studies the support loci of these modules, or, alternatively, the jump
lociV8

:
(-), viewed as subsets of the character group Char(-) = Hom(c1(-),C∗).

The formality and finiteness properties of a space and its algebraic models put strong
constraints on the geometric structure of the cohomology jump loci. To start with, let -
be a @-finite space, for some @ ≥ 1. Then the tangent cone at the trivial character 1 to the
varietyV 8

:
(-) is included in R8

:
(-), for all 8 ≤ @ and : ≥ 0, see [86].
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Now suppose - admits a @-finite @-model �; then TC1 (V8
:
(-)) = R8

:
(�), for all 8 ≤ @,

see [40]. Moreover, as a consequence of [42], [40], all irreducible components of these
resonance varieties are rationally defined linear subspaces of �1(�) = �1 (-,C), and, by
[25], all the components of V 8

:
(-) passing through 1 are algebraic subtori of Char(-).

Finally, suppose - is @-formal. Then, for 8 ≤ @, all the components of R8
:
(-) are rationally

defined linear subspaces of �1(-,C).

1.7. Models for Kähler manifolds and smooth algebraic varieties

One of the foundational papers of rational homotopy theory is the one by Deligne, Grif-
fiths, Morgan, and Sullivan [37], where the authors use Hodge theory and the 332-lemma
to establish the formality of all compact Kähler manifolds, and thus, of all smooth, com-
plex algebraic projective varieties.

In [100], Morgan constructed a finite-dimensional model for any smooth, complex,
quasi-projective variety - by using a normal crossings divisors compactification - . This
model was refined by Dupont in [45], by allowing those divisors to intersect like hyper-
planes in a hyperplane arrangement. These models are not always formal, but still retain
good partial formality properties; for instance, if - is the complement of a hypersurface
in CP=, then - is 1-formal, but not formal, in general.

The structure of the characteristic varieties of compact Kähler manifolds and smooth,
quasi-projective varieties was determined in [28], [12], [65], [123], [3], [24]: If - is such a
space, then each varietyV 8

: (-) is a finite union of torsion-translated subtori of Char(-).
The key to understanding the degree-1 cohomology jump loci is the (finite) set E(-) of
holomorphic, surjective maps 5 : - → Σ for which the generic fiber is connected and
the target is a smooth curve Σ with j(Σ) < 0, up to reparametrization at the target. As
an application of these techniques, we obtained in [113] the following result. Let - be a
smooth quasi-projective variety with 11(-) > 0, and let � be a Dupont model for - ; then
c1(-) surjects onto a free, non-cyclic free group if and only if R1

1 (�) ≠ {0}.

1.8. Models for compact Lie group actions

Let " be a compact, connected, smooth manifold that supports an almost free action by
a compact, connected Lie group  . Under a partial formality assumption on the orbit
space "/ and a regularity assumption on the characteristic classes of the action, we
constructed in [113] an algebraic model for " with commensurate finiteness and partial
formality properties. The existence of such a model has various implications on the struc-
ture of the cohomology jump loci of " and of the representation varieties of c1(").

In many ways, Sasakian geometry is an odd-dimensional analog of Kähler geometry.
More explicitly, every compact Sasakian manifold " admits an almost-free circle action
with orbit space a Kähler orbifold. Furthermore, the Euler class of the action coincides
with the Kähler class of the base, ℎ ∈ �2("/(1,Q), and this class satisfies the Hard Lef-
schetz property. As shown by Tievsky in [141], every Sasakian manifold " as above has
a rationally defined, finite-dimensional model over R of the form (�∗(#, R) ⊗ ∧(C), 3),
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where the differential 3 vanishes on �∗(#, R) and sends C to ℎ. Using this model, it is
shown in [113] that compact Sasakian manifolds of dimension 2= + 1 are (= − 1)-formal,
and that their fundamental groups are filtered-formal.

1.9. Models for closed 3-manifolds

With a few exceptions (such as rational homology spheres, knot complements, or Seifert
manifolds), the rational homotopy theory of 3-dimensional manifolds is very difficult to
handle. Part of the reason is that not only 3-manifolds may fail to be formal, and even fail
to have a 1-finite 1-model. Nevertheless, much is known about the Alexander polynomial,
Δ" , of a closed, orientable 3-manifold " . and the way this polynomial relates to the
cohomology jump loci of " , see [43], [61], [127], [128]. In turn, these invariants inform
on the formality and finiteness properties of " .

For instance, we showed in [128] the following: If 11(") is even and positive, and
if Δ" ≠ 0, then " is not 1-formal. On the other hand, if Δ" ≠ 0, yet Δ" (1) = 0 and
the tangent cone to the zero set of Δ" is not a finite union of rationally defined linear
subspaces, then " admits no 1-finite 1-model.

When the 3-manifold " fibers over (1, more can be said. For instance, if 11(") is
even, then, as shown in [109], " is not 1-formal. On the other hand, if " is 1-formal and
the algebraic monodromy has 1 as an eigenvalue, then, as shown in [110], there are an
even number of 1 × 1 Jordan blocks for this eigenvalue, and no higher size Jordan blocks.

1.10. Organization

The paper in divided in roughly five parts.
Part I (Sections 2, 3, 4) treats the general theory of (commutative) differential graded

algebras, formality and its variants, Massey products, descent properties, Hirsch exten-
sions, and Sullivan’s minimal models.

Part II (Sections 5, 6, 7) deals with several of the Lie algebras that appear in this theory
(graded and filtered Lie algebras, Malcev Lie algebras, and holonomy Lie algebras) and
discusses some of their properties and interconnections.

Part III (Sections 8, 9, 10) contains the basics of rational homotopy theory, such
as completions, rationalizations, and algebraic models for spaces and groups, focussing
mostly on the formality and finiteness properties of such models.

Part IV (Sections 11, 12) brings into play the Alexander invariants and the cohomology
jump loci of spaces and suitable algebraic models, and connects the characteristic and
resonance varieties to various formality and finiteness properties.

Part V (Sections 13, 14, 15) applies these general theories in three particular contexts:
that of Kähler manifolds and smooth, quasi-projective varieties; compact Lie group actions
on manifolds; and closed, orientable 3-manifolds.
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2. Differential graded algebras

2.1. Graded algebras

Throughout this work, k will denote a ground field of characteristic 0. Unless otherwise
specified, all tensor products will be over k.

A graded k-vector space is a vector space � over k, together with a direct sum decom-
position, � =

⊕
=≥0 �

=, into vector subspaces. An element 0 ∈ �= is said to be homoge-
neous; we write |0 | = = for its degree, and put 0̄ = (−1) |0 |0.

A graded algebra over k is a graded k-vector space, �∗ =
⊕

=≥0 �
=, equipped with an

associative multiplication map, · : � × �→ �, making � into a k-algebra with unit 1 ∈ �0

such that |0 · 1 | = |0 | + |1 | for all homogenous elements 0, 1 ∈ �. A graded algebra � is said
to be graded-commutative (for short, a cga), if 0 · 1 = (−1) |0 | |1 |1 · 0 for all homogeneous
0, 1 ∈ �. A morphism between two graded algebras is a k-linear map i : � → � that
preserves gradings and satisfies i(0 · 1) = i(0) · i(1) for all 0, 1 ∈ �.

A graded k-algebra � is of finite-type (or, locally finite) if all the graded pieces �= are
finite-dimensional. We say that � is @-finite (for some integer @ ≥ 0) if dimk �= < ∞ for
= ≤ @, and we say that � is finite-dimensional (as a k-vector space) if dimk � <∞. Finally,
we say that � is connected if �0 is the k-span of the unit 1 (and thus �0 = k).

The most basic example of a k-cga is the free commutative graded algebra on a graded
k-vector space +∗; denoted by

∧
+ , this (connected) algebra is the tensor product of the

symmetric algebra on + even with the exterior algebra on +odd.

2.2. Differential graded algebras

The next notion, which plays a key role in the theory described here, unifies the concept
of a graded algebra with that of a cochain complex.

Definition 2.1. A differential graded algebra (for short, a dga) over a field k is a graded
k-algebra, �∗, equipped with a differential 3 : � → � of degree 1 satisfying the graded
Leibniz rule: 3 (01) = 3 (0) · 1 + 0̄ · 3 (1) for all homogeneous 0, 1 ∈ �.

Viewing (�, 3) as a cochain complex, we write /= (�) = ker(3 : �= → �=+1) for the
space of =-cocycles and �= (�) = im(3 : �=−1→ �=) for the space of =-coboundaries, and
we let �= (�) = /= (�)/�= (�) be the =-th cohomology group of (�, 3). The direct sum of
those vector spaces, �∗ (�) =

⊕
8≥0 �

8 (�), inherits the structure of a graded algebra from
�. When �∗ (�) is of finite-type, we denote by 1=(�) = dimk �= (�) the Betti numbers of
�. Given an =-cocyle 0, we denote by [0] ∈ �= (�) its cohomology class.

A commutative differential graded algebra (for short, a cdga) is a dga � = (�∗, 3) for
which the underlying graded algebra is graded-commutative. In this case, the cohomology
algebra �∗ (�) inherits the structure of a cga.

If � is a connected dga, then the differential 3 : �0 → �1 vanishes; indeed, 3 (1) =
3 (1 · 1) = 3 (1) · 1 + 1 · 3 (1), and so 3 (1) = 0, since char(k) = 0. Therefore, �0(�) = k
and the cohomology algebra �∗ (�) is also connected.
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2.3. Weak equivalences

A morphism between two dgas is a k-linear map, i : �→ �, which preserves gradings,
multiplicative structures, and differentials; in other words, i is a map of graded k-algebras
which is also a map of cochain complexes. Such a map induces a morphism, i∗ : �∗(�) →
�∗ (�), between the respective cohomology algebras. We say that i is a quasi-isomor-

phism if i∗ is an isomorphism.
A weak equivalence between two dgas, � and �, is a finite sequence of quasi-isomor-

phisms (going either way) connecting � to �; for instance,

� �1 · · · �ℓ−1 �.
i1 i2 iℓ

(2.1)

Note that a weak equivalence induces a well-defined isomorphism �∗(�) � �∗(�). If a
weak equivalence between � and � exists, the two dgas are said to be weakly equivalent,
written � ≃ �. Evidently, ≃ is an equivalence relation among dgas.

An analogous notion holds in the category of commutative dgas. Namely, if � and �
are two cdgas, we say that � ≃ � is there is a zig-zag of quasi-isomorphisms as in (2.1)
that go through cdgas �8 . The following theorem resolves a long-standing question, by
showing that weak equivalence among cdgas holds even if one allows the zig-zags from
(2.1) to go through dgas.

Theorem 2.2 ([26]). Let � and B be two k-cdgas. Then � ≃ � as dgas if and only if � ≃ �
as cdgas.

All these concepts have partial analogues. Fix an integer @ ≥ 0. We say that a dga (or
cdga) morphism i : �→ � is a @-quasi-isomorphism if i∗ is an isomorphism in degrees
up to @ and a monomorphism in degree @ + 1. A @-equivalence between two dgas (or
cdgas), � and �, is a zig-zag of @-quasi-isomorphisms of dgas (or cdgas) connecting
� to �. If such a zig-zag exists, we say that � and � are @-equivalent and write this as
� ≃@ �. Again, ≃@ is an equivalence relation among either dgas or cdgas. We do not
know whether Theorem 2.2 holds with ≃ replaced by ≃@, for arbitrary @, but we expect it
does.

Clearly, if � ≃ �, then � ≃@ � for all @ ≥ 0, and if � ≃@ �, then � ≃= � for all = ≤ @.
Moreover, if � is of finite-type and � ≃ �, then � is also of finite-type and 1= (�) = 1= (�)
for all = ≥ 0. Likewise, if � is @-finite and � ≃@ �, then � is also @-finite and 1= (�) =
1= (�) for all = ≤ @. The next lemma shows that every @-finite cdga may be replaced (up
to @-equivalence) by a finite-dimensional one, whose graded pieces vanish above degree
@ + 1.

Lemma 2.3 ([113]). Let � be a @-finite cdga. There is then a natural @-equivalence,

� ≃@ �[@], where �[@] is a finite-dimensional cdga with �[@]8 = 0 for all 8 > @ + 1.
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The construction of �[@] is done in two steps: first one replaces � by its truncation,
� = �/�>@+1 =

⊕
8≤@+1 �

8 , and then one defines a sub-cdga �[@] ⊂ � by setting

�[@] =
⊕

8≤@
�8 ⊕

(
3�@ +

∑

8, 9≤@
8+ 9=@+1

�8 · � 9
)
. (2.2)

An analogous result holds for dgas.

2.4. Homotopies and equivalences

Let � be a k-dga, and let
∧(C, 3C) be the free k-dga generated by elements C in degree 0

and D in degree 1, and differential 3 given by 3 (C) = D and 3 (D) = 0. For each B ∈ k, let
evB :

∧(C, 3C) → k be the dga map sending C to B and 3C to 0. This map induces another
dga map,

EvB ≔ id⊗ evB : � ⊗∧(C, 3C) � ⊗ k = �. (2.3)

Two dga maps, i0, i1 : �→ �, are said to be homotopic if there is a dga map,Φ: �→
� ⊗∧(C, 3C), such that EvB ◦Φ= iB for B = 0,1. It is readily seen that homotopic dga maps
induce the same map in cohomology.

We say that two dga morphisms, i : �→ � and i′ : �′ → �′, are weakly equivalent

(written i ≃ i′) if there are two zig-zags of weak equivalences of dgas, and dga maps
i1, . . . , iℓ−1 such that the following diagram commutes, up to homotopy:

� �1 · · · �ℓ−1 �′

� �′1 · · · �′ℓ−1 �′.

i i1

k1 k2

iℓ−1

kℓ

i′

k′1 k′2 k′
ℓ

(2.4)

The notion of @-equivalence (written i ≃@ i′) is defined similarly, and so are the analo-
gous notions in the cdga category.

2.5. Poincaré duality

Let � be a finite-dimensional, commutative graded algebra over a field k of characteristic
0. We say that � is a Poincaré duality algebra of dimension = (for short, an =-pda) if
�8 = 0 for 8 > = and �= = k, while the bilinear forms �8 ⊗ �=−8 → �= = k given by
the product are non-degenerate, for all 0 ≤ 8 ≤ = (in particular, � is connected). If " is
a closed, connected, orientable, =-dimensional manifold, then, by Poincaré duality, the
cohomology algebra � = �∗(", k) is an =-pda.

Now let � = (�∗, 3) be a cdga. We say that � is a Poincaré duality differential graded

algebra of dimension = (for short, an =-pd-cdga) if the underlying algebra � is an =-pda,
and, moreover, �= (�) = k, or, equivalently, 3�=−1 = 0.

Clearly, if � is an =-pda, then (�, 0) is an =-pd-cdga. Hasegawa showed in [69] that
the minimal model for the classifying space of a finitely-generated nilpotent group is a
pd-cdga. Noteworthy is the following result of Lambrechts and Stanley [83]
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Theorem 2.4 ([83]). Let (�, 3) be a cdga such that �1(�) = 0 and �∗ (�) is an =-pda.

Then � is weakly equivalent to an =-pd-cdga.

3. Formality

3.1. Formal dgas

In this section, we cover the notion of formality. Introduced in [37], [137] and further
developed in [68], [100], [66], [139], [108], [91], [122], [132], and many other works, this
notion plays a central role in rational homotopy theory.

Definition 3.1 ([37], [137]). A dga (�, 3�) is said to be formal if it is weakly equivalent
to (�∗(�), 0), its cohomology algebra endowed with the zero differential.

Note that � is formal if and only if it is weakly equivalent to some dga � with zero
differential, since, in that case, we necessarily have (�,0) ≃ (�∗ (�),0). In like manner, we
say that a cdga (�, 3�) is formal if (�, 3�) ≃ (�∗ (�), 0) via a weak equivalence through
cdgas.

Example 3.2. Let � =
∧(01, 02, 1) be the free cga on generators 01, 02 in degree = and

1 in degree 2= − 1, equipped with the differential 3 given by 308 = 0 and 31 = 0102. If
= ≥ 2, the cdga (�, 3) is not formal, since �∗(�) is generated by the elements D8 = [08],
and so any weak equivalence from (�, 3) to (�∗(�), 0) would need to take the non-zero
element 1 to 0, by degree reasons.

Formality is preserved under weak equivalences; that is, if � ≃ �, then � is formal
if and only if � is formal. Moreover, as shown by Halperin and Stasheff in [68], a cdga

(�, 3) with �∗(�) of finite-type is formal if and only if the identity map of �∗(�) can be
realized by a weak equivalence between (�, 3) and (�∗ (�), 0).

The next result, originally proved directly by Salehi in [122], now follows at once from
Theorem 2.2.

Corollary 3.3 ([122]). Let � be a k-cdga. Then � is formal as a dga if and only if � is

formal as a cdga.

3.2. Intrinsic formality

We now present two variants of formality, the first being a rigid type of formality and the
second formality up to a degree.

A strong form of formality was introduced by Sullivan in [137], and developed in [68],
[50], and [88]. We say that a k-cga � is intrinsically formal if any k-dga (�, 3) whose
cohomology is isomorphic to � must be formal, that is, (�, 3) ≃ (�, 0). A similar notion
holds for cdgas; by Theorem 2.2, if � is intrinsically formal in the category of dgas, it is
also instrinsically formal in the category of cdgas. Plainly, if � is a dga or a cdga such
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that �∗ (�) is intrinsically formal, then � is formal. The following results of Sullivan and
Halperin–Stasheff provide large classes of intrinsically formal cgas.

Theorem 3.4 ([137]). Let � be the quotient of a finitely generated, free cga by an ideal

generated by a regular sequence, that is, a sequence A1, . . . , A= of homogeneous elements

in � such that A8 is not a zero-divisor in �/(A1, . . . , A8−1), for each 8 ≤ =. Then � is

intrinsically formal.

Algebras of the form� =
∧
+/(A1, . . . , A=) as above are sometimes called hyperformal,

see [50], [88]. In particular, exterior algebras and polynomial algebras are hyperformal,
and thus intrinsically formal.

Theorem 3.5 ([68]). Let � be a connected cga such that �8 = 0 for 1 ≤ 8 ≤ : and for

8 > 3: + 1. Then � is intrinsically formal.

3.3. Partial formality

The notion of formality can also be relaxed, as follows. Fix an integer @ ≥ 0. We say that
a dga (or a cdga) � is @-formal if (�, 3�) ≃@ (�∗ (�), 0) as dgas (or cdgas). We do not
know whether the analog of Corollary 3.3 holds in this context, but we expect it does,

Clearly, if � is formal, then � is @-formal, for all @ ≥ 0, and if � is @-formal, then it is
=-formal for every = ≤ @. It is readily seen that connected dgas are 0-formal. Moreover, if
� ≃@ �, then � is @-formal if and only if � is @-formal.

Example 3.6. Let � =
∧(01, . . . , 02@, 1) be the exterior algebra on specified generators in

degree 1, equipped with the differential 3 given by 308 = 0 and 31 = 0102 + · · · + 02@−102@ .
It follows from [91, Remark 5.4] that the cdga (�, 3) is (@ − 1)-formal but not @-formal.

We refer to Măcinic [91] for a more thorough discussion of partial formality and
related notions (see also [108], [132]).

3.4. Field extensions and formality

As is well-known, a finite-type, rationally defined cdga is formal if and only it is formal
over any field of characteristic 0. This foundational result was proved independently and
in various degrees of generality by Sullivan [137], Neisendorfer and Miller [101], and
Halperin and Stasheff [68]. We conclude this section with a discussion of this topic and
some recent generalizations from [132] to partially formal cdgas.

Given a dga (�, 3) over a field k of characteristic 0 and a field extension k ⊂ K, we
let (� ⊗k K, 3 ⊗ idK) be the cdga over K obtained by extending scalars.

Theorem 3.7 ([68]). Let (�, 3�) and (�, 3�) be two cdgas over k whose cohomology

algebras are connected and of finite type. Suppose there is an isomorphism of graded

algebras, 5 : �∗(�) → �∗ (�), and suppose 5 ⊗ idK : �∗ (�) ⊗ K→ �∗ (�) ⊗ K can be

realized by a weak equivalence between (� ⊗ K, 3� ⊗ idK) and (� ⊗ K, 3� ⊗ idK). Then

5 can be realized by a weak equivalence between (�, 3�) and (�, 3�).
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This theorem has the following corollary. The result is stated without proof in [68,
Corollary 6.9]; a complete proof is provided in [132, Corollary 4.17]. Self-contained
proofs under some additional hypotheses were previously given in [137, Theorem 12.1]
and [101, Corollary 5.2].

Corollary 3.8 ([68]). Let � = (�, 3�) be a connected k-cdga with �∗ (�) of finite-type.

Then � is formal if and only if the K-cdga (� ⊗ K, 3� ⊗ idK) is formal.

These classical formality results were generalized in [132, Theorem 4.19], which
extends the descent-of-formality results of Sullivan, Neisendorfer–Miller, and Halperin–
Stasheff to the partially formal setting.

Theorem 3.9 ([132]). Let (�, 3�) be a cdga over k, and let k ⊂ K be a field extension.

Suppose �≤@+1(�) is finite-dimensional and �0(�) = k. Then (�, 3�) is @-formal if and

only if (� ⊗ K, 3� ⊗ idK) is @-formal.

3.5. Formality of dga maps

The notion of formality may be extended from the objects to the morphisms of the dga

category, as follows.

Definition 3.10. A dga morphism i : �→ � is said to be formal if there is a diagram of
the form (2.4) connecting i to the induced homomorphism i∗ : �∗ (�) → �∗(�) between
cohomology algebras (viewed as dgas with zero differentials). Likewise, i is said to be
@-formal, for some @ ≥ 0, if i ≃@ i∗.

Note that in the first case both � and � need to be formal dgas, while in the second
case both � and � need to be @-formal. Also note that if i is formal and i ≃ i′, then i′

is also formal, and similarly for @-formality.
Completely analogous notions may be defined for cdga morphisms. although we do

not know whether a statement analogous to Theorem 2.2 holds in this context. Neverthe-
less, a descent of formality result analogous to Corollary 3.8 holds.

Theorem 3.11 ([137], [146]). Let i : �→ � be a morphism between connected k-cdgas

with finite Betti numbers, and let k ⊂ K be a field extension. Then i is formal if and only

if i ⊗ idK : � ⊗ K→ � ⊗ K is formal.

We do not know whether a statement in the spirit of Theorems 3.9 and 3.11 holds for
@-formal maps.

Example 3.12. Fix an even integer = ≥ 2 and consider the cdga morphism i : (�, 3) →
(�, 0), where � =

∧(0, 1), with |0 | = =, |1 | = 2= − 1, and differential given by 3 (0) = 0
and 3 (1) = 02; � =

∧(2) with |2 | = 2= − 1; and i is given by i(0) = 0 and i(1) = 2. Then
�∗ (�) = ∧(D) with |0 | = =, and the cdga map k : � → �∗(�) given by k(0) = D and
k(1) = 0 induces the identity in cohomology. Nevertheless, the map i∗ : �̃∗(�) → �̃∗ (�)
is trivial, and so the morphism i, which is non-trivial, cannot be formal.
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3.6. Massey products

A well-known obstruction to formality is provided by the higher-order Massey products,
introduced by W.S. Massey in [95], and studied for instance in [78], [97], [116], [143],
[121], [6], and [117].

Let (�, 3) be a k-dga and let D1, . . . , D= be elements in �∗ (�); without loss of essential
generality, we may assume that = ≥ 3 and each D8 is homogeneous and of positive degree. A
defining system for D1, . . . , D= is a collection of elements 08, 9 ∈ � such that 308−1,8 = 0 and
[08−1,8] = D8 for 1 ≤ 8 ≤ = and 308, 9 =

∑
8<A< 9 0̄8,A 0A , 9 for 0 ≤ 8 < 9 ≤ = and (8, 9) ≠ (0, =).

It is readily verified that the element

U ≔
∑

0<A<=

0̄0,A0A ,= (3.1)

is a cocycle, of degree |U| = 2 − = + ∑=
8=1 |D8 |. The =-fold Massey product 〈D1, . . . , D=〉,

then, is the subset of �∗ (�) consisting of the cohomology classes [U] corresponding to
all possible defining systems for D1, . . . , D=. We say that the Massey product is defined if
there is at least one such defining system, or, equivalently, 〈D1, . . . , D=〉 ≠ ∅, in which case
the indeterminancy of the Massey product is the subset {D − { | D, { ∈ 〈D1, . . . , D=〉} ⊆
�∗ (�). When a Massey product is defined, we say it vanishes if it contains the element 0;
otherwise, it is non-vanishing.

The simplest Massey triple products are as follows. Let D1, D2, D3 be elements in �1(�)
such that D1D2 = D2D3 = 0. We may then choose 1-cocycles 00,1, 01,2, 02,3 representing
D1, D2, D3 and 1-cochains 00,2 and 01,3 such that 300,2 = −00,101,2 and 301,3 = −01,202,3,
The triple product 〈D1, D2, D3〉 is then the subset of �2(�) consisting of the cohomology
classes −[00,101,3 + 00,202,3], for all such choices of defining systems. Due to the ambigu-
ity in the choices made, 〈D1, D2, D3〉 may be viewed as a coset of D1 · �1(�) + �1(�) · D3

in �2(�).

Example 3.13. Let (�, 3) be the cdga from Example 3.2 with = = 1; namely, � is the exte-
rior algebra on generators 01, 02, 1 in degree 1 and differential given by 308 = 0 and 31 =

0102. Letting D8 = [08] ∈ �1(�), we have that the triple Massey products 〈D1, D1, D2〉 =
{[011]} and 〈D1, D2, D2〉 = {[102]} are defined, have 0 indeterminacy, and are non-van-
ishing; in fact, the two cohomology classes generate �2(�). Therefore, � is not formal.

Massey products enjoy the following (partial) functoriality properties.

Proposition 3.14 ([78], [97]). Let i : �→ � be a dga morphism, and let i∗ : �∗ (�) →
�∗ (�) be the induced morphism in cohomology; then

i∗(〈D1, . . . , D=〉) ⊆ 〈i∗ (D1), . . . , i∗ (D=)〉. (3.2)

Moreover, if i is a quasi-isomorphism, then (3.2) holds as equality.

In particular, if 〈D1, . . . , D=〉 is defined, then 〈i∗ (D1), . . . , i∗ (D=)〉 is also defined;
and if, in addition, 〈i∗ (D1), . . . , i∗ (D=)〉 is non-vanishing, then 〈D1, . . . , D=〉 is also non-
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vanishing. As another consequence, the following holds: if � ≃ �, then all Massey prod-
ucts in �∗ (�) vanish if and only if all Massey products in �∗ (�) vanish.

Finally, if the map i : � → � is a @-quasi-isomorphism, for some @ ≥ 0, then (3.2)
holds as equality in degrees up to @ + 1. Thus, if � ≃@ �, then all Massey products in
�≤@+1(�) vanish if and only if all Massey products in �≤@+1(�) vanish.

3.7. Massey products and formality

The vanishing of Massey products provides a well-known obstruction to formality. An
analogous statement holds for partial formality. For completeness, we make a formal state-
ment and sketch the proof.

Proposition 3.15. Let (�, 3) be a k-dga. If � formal, then all Massey products in �∗(�)
vanish. Furthermore, if � is @-formal, for some @ ≥ 1, then all Massey products in�≤@+1(�)
vanish.

Proof. First suppose 3 = 0, so that �∗(�) = �. Let 〈D1, . . . , D=〉 be a Massey product. We
may then choose a defining system with 08−1,8 = D8 and all other 08, 9 = 0, which implies
that the cocycle U from (3.1) is equal to 0; thus, 〈D1, . . . , D=〉 vanishes.

Now suppose (�, 3) is formal, that is, (�, 3) ≃ (�, 0). As we just saw, all Massey
products vanish in �∗ (�); hence, they must also vanish in �∗(�). The case when (�, 3)
is @-formal is treated completely analogously.

In general, formality is stronger than the mere vanishing of all Massey products; in
fact, it is equivalent to the uniform vanishing of all such products. This phenomenon will
be illustrated in Theorem 10.9, where we shall see examples of non-formal cdgas for
which all Massey products vanish.

4. Minimal models

4.1. Hirsch extensions

Given a graded k-vector space +∗, recall that
∧
+ denotes the free graded, graded-com-

mutative algebra generated by + . Choosing a homogeneous basis X = {GU}U∈� for + , this
algebra may be identified with

∧X ≔
⊗

U

∧(GU), where
∧(G) is the exterior (respec-

tively, polynomial) algebra on a single generator G of odd (respectively, even) degree.
Now let � = (�∗, 3�) be an arbitrary cdga. A Hirsch extension � (of degree =) is an

inclusion, (�, 3�) ↩→ (� ⊗
∧
+, 3), where + is a k-vector space concentrated in degree

= and the differential 3 sends + into �=+1. We say this is a finite Hirsch extension if + is
finite-dimensional. The next lemma follows straight from the definitions.

Lemma 4.1. Let U : (�, 3�) ↩→ (� ⊗
∧
+, 3) be the inclusion map of a Hirsch extension

of degree = + 1. Then U is an =-quasi-isomorphism.
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Now suppose + is an oddly-graded, finite-dimensional vector space, with homoge-
neous basis {C8 ∈ +<8 }. Given a degree 1 linear map, g : +∗→ /∗+1(�), we define the cor-
responding Hirsch extension as the cdga (� ⊗g

∧
+, 3) where the differential 3 extends

the differential on �, while 3C8 = g(C8).

Proposition 4.2 ([85]). The isomorphism type of the cdga (� ⊗g
∧
+, 3) depends only

on � and the homomorphism induced in cohomology, [g] : +∗ → �∗+1(�). Moreover,

[g] and [g] ◦ 6 give isomorphic extensions, for any automorphism 6 of the graded vector

space + .

The above result is proved in [85, Lemmas II.2 and II.3] in the case when all the
degrees <8 are equal; the same argument works in the general case.

Proposition 4.3 ([114]). Let � = � ⊗g
∧(C8) be a Hirsch extension with variables C8 of

odd degree <8 . If � is an =-pd-cdga, then � is an <-pd-cdga, where < = = +∑<8 .

4.2. Minimal cdgas

The following key definition is due to Sullivan [137].

Definition 4.4 ([137]). A cdga � = (�∗, 3) is said to be minimal if the following condi-
tions are satisfied.

(1) � =
∧X is the free cga on positive-degree generatorsX = {GU}U∈� indexed by a

well-ordered set �

(2) 3GU ∈
∧({GV | V < U}) for all U.

(3) 3GU ∈
∧+X ·∧+X for all U, where

∧+X is the ideal generated by X.

Letting +∗ be the graded vector space generated by the set X, we may also write
� = (∧+, 3). We say that � is @-minimal (for some @ ≥ 1) if � is minimal and + 8 = 0 for
all 8 > @, or, equivalently, deg(GU) ≤ @ for all U.

Here is an alternative interpretation of this notion. The cdga (�, 3) is minimal if
� =

⋃
9≥0 � 9 , where �0 = k, each � 9 is a Hirsch extension of � 9−1, and the differential

3 is decomposable, i.e., 3� ⊂ �+ ∧ �+, where �+ =
⊕

=≥1 �
=. This yields an increasing,

exhausting filtration of � by the sub-dgas � 9 . The decomposability of the differential is
automatically satisfied if � is generated in degree 1.

The next lemma illustrates some of the usefulness of the notion of 1-minimality.

Lemma 4.5 ([39]). Let � be a 1-minimal cdga, and let i, k : �→ � be two homotopic

cdga morphisms. Suppose 3� = 0 and i1 : �1 → �1 is surjective. Then k1 : �1 → �1 is

also surjective.

4.3. Minimal models

Let � be a cdga. We say that a cdga M is a minimal model for � if M is a minimal
cdga and there exists a quasi-isomorphism d : M → �. Likewise, we say that a minimal
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cdgaM is a @-minimal model for � ifM is generated by elements of degree at most @,
and there exists a @-quasi-isomorphism d : M → �. A basic result in rational homotopy
theory is the following existence and uniqueness theorem, first proved for minimal models
by Sullivan [137], and for partial minimal models by Morgan [100].

Theorem 4.6 ([100], [137]). Let � be a k-cdga with �0(�) = k . Then � admits a minimal

model,M(�), unique up to isomorphism. Likewise, for each @ ≥ 0, there is a @-minimal

model,M@ (�), unique up to isomorphism.

By construction,M(�) = (∧+, 3) andM@ (�) = (
∧
+≤@, 3), for some graded vector

space + . It follows that the minimal modelM(�) is isomorphic to a minimal model built
from the @-minimal modelM@ (�) by means of Hirsch extensions in degrees @ + 1 and
higher. Thus, in view of Lemma 4.1,M@ (�) ≃@ M(�).

Applying Lemma 2.3, we obtain the following finiteness criterion for cdgas.

Proposition 4.7. Let � be a @-finite cdga. Then 18 (M@ (�)) < ∞ for all 8 ≤ @ + 1.

The minimal model comes with a structural quasi-isomorphism, d : M(�) → �. If
d′ : M ′(�) → � is another minimal model, there is an isomorphismk : M(�) �−−→M ′(�)
such that d′ ◦ k ≃ d. Furthermore, the minimal model is functorial: if i : � → � is a
morphism between two cdgas with connected homology, there is an induced morphism
of cdgas,M(i) : M(�) → M(�), such that d� ◦M(i) ≃ i ◦ d�. Similar results hold
for the partial minimal models.

The above considerations imply the following: two cdgas with connected homology
are weakly isomorphic if and only if their minimal models are isomorphic. Alternatively,
if � and �′ are two cdgas with connected homology, then � ≃ �′ if and only if there is a
minimal cdgaM and a short zig-zag of quasi-isomorphisms,

� M �′.
d′d

(4.1)

Analogous results hold for @-minimal models.

4.4. Minimality and formality

In [37], Deligne, Griffiths, Morgan, and Sullivan gave a very practical interpretation of
formality in the context of minimal cdgas.

Theorem 4.8 ([37]). Let � = (∧+, 3) be a minimal cdga. Then � is formal if and only

if each subspace + 8 = �8 ∩ + decomposes as a direct sum, + 8 = # 8 ⊕ �8 , where �8 =

/ 8 (�) ∩ + and any cocycle in the ideal of � generated by
⊕

# 8 is a coboundary.

As noted in [37], choosing complements # 8 to �8 with the specified property is
equivalent to choosing a cdga-morphism (�, 3) → (�∗ (�), 0) inducing the identity in
cohomology. Furthermore, the existence of splittings + 8 = # 8 ⊕ �8 such that any cocycle
in the ideal generated by

⊕
8 #

8 is a coboundary is one way of saying that one may make
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uniform choices of subspaces spanned by defining systems so that all the cocycles rep-
resenting Massey products are coboundaries—a stronger condition than saying that each
individual Massey product vanishes.

Work of Sullivan [137] and Morgan [100] shows that a cdga (�, 3) is formal if and
only of there exists a quasi-isomorphism k : M(�) → (�∗ (�), 0). Likewise, Măcinic
showed in [91] that � is @-formal if and only if there exists a @-quasi-isomorphismk@ : M@ (�) →
(�∗ (�), 0). The following lemma provides a convenient criterion for partial formality.

Lemma 4.9 ([132]). Let � be a k-cdga, and suppose that dimk �@+1(M@ (�)) <∞. Then

� is @-formal if and only ifM@ (�) is @-formal.

Minimal models are also relevant when considering the formality of morphisms of
cdgas. Indeed, let i : �→ � be a cdga map; then i is formal (in the sense of Definition
3.10) if and only if there is a diagram of the form

� M(�) (�∗ (�), 0)

� M(�) (�∗ (�), 0)

i

d�

M(i)

k�

i∗

d� k�

(4.2)

which commutes up to homotopy.
Analogous statements hold for @-formal maps, with the middle arrow replaced by the

morphismM@ (i) : M@ (�) → M@ (�).

4.5. The dual of a 1-minimal cdga

Let � = (�∗, 3) be a minimal cdga over k, generated in degree 1. Following [100], [77],
[53], let us consider the filtration

k = �(0) ⊂ �(1) ⊂ �(2) ⊂ · · · ⊂ � =
⋃

8≥0

�(8), (4.3)

where �(1) is the subalgebra of � generated by the cocycles in �1, and �(8) for 8 > 1 is the
subalgebra of � generated by all elements G ∈ �1 such that 3G ∈ �(8 − 1). Each inclusion
�(8 − 1) ⊂ �(8) is a Hirsch extension of the form �(8) = �(8 − 1) ⊗∧

+8, where

+8 ≔ ker
(
�2(�(8 − 1)) → �2(�)

)
. (4.4)

Taking degree 1 pieces in the filtration (4.3), we obtain the filtration k = �(0)1 ⊂ �(1)1 ⊂
· · · ⊂ �1. Clearly, �1 is a 1-minimal cdga.

Let us assume now that each of the aforementioned Hirsch extensions is finite, that is,
dim+8 < ∞ for all 8. Using the fact that 3 (+8) ⊂ �(8 − 1), we infer that each dual vector
space L8 = (�(8)1)∨ acquires the structure of a k-Lie algebra by setting

〈[D∨, {∨], |〉 ≔ 〈D∨ ∧ {∨, 3|〉 (4.5)
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for D, {, | ∈ �(8)1. Clearly, 3 (+1) = 0, and thus L1 = (+1)∨ is an abelian Lie algebra. Using
the vector space decompositions

�(8)1 = �(8 − 1)1 ⊕ +8 and �(8)2 = �(8 − 1)2 ⊕ (�(8 − 1)1 ⊗ +8) ⊕
∧2+8, (4.6)

one easily sees that the canonical projectionL8։L8−1, defined as the dual of the inclusion
map �(8 − 1) ↩→ �(8), has kernel +∨8 , and this kernel is central inside L8 . Therefore, we
obtain a tower of finite-dimensional, nilpotent k-Lie algebras,

0 L1 L2 · · · L8 · · · . (4.7)

Let L = L(�) be the inverse limit of this tower, equipped with the inverse limit fil-
tration. Then L is a complete, filtered Lie algebra with the property that L/Ŵ8+1 (L) = L8

for each 8 ≥ 1. Conversely, from a tower as in (4.7), one can construct a sequence of
finite Hirsch extensions as in (4.3). Let �(8) = �(8 − 1) ⊗ ∧

+8 be one of the cdgas in
this sequence, with differential given by (4.5). Then �(8) coincides with the Chevalley–
Eilenberg complex C(L8) = (

∧
L∨8 , 3) associated to the finite-dimensional Lie algebra

L8 = L(�(8)); that is, the cdga whose underlying graded algebra is the exterior algebra
on the dual vector space L∨8 , and whose differential is the extension by the graded Leibniz
rule of the dual of the signed Lie bracket on the algebra generators. By the definition of
Lie algebra cohomology, then,

�∗ (�(8)) � �∗(L8 , k). (4.8)

The direct limit of the above sequence of Hirsch extensions, � =
⋃
8≥0 �(8), is a

minimal k-cdga generated in degree 1. We obtain in this fashion an adjoint correspon-
dence that sends � to the pronilpotent Lie algebra L = L(�) and conversely, sends a
pronilpotent Lie algebra L to the minimal algebra � = �(L). Under this correspondence,
filtration-preserving cdga morphisms � → � get sent to filtration-preserving Lie mor-
phisms L(�) → L(�), and the other way around.

4.6. Positive weights

Following Body, Mimura, Shiga, and Sullivan [20], Morgan [100], and Sullivan [137], we
say that a commutative graded algebra �∗ has positive weights if each graded piece admits
a vector space decomposition

�8 =
⊕

U∈Z
�8,U (4.9)

with �8,U = 0 for U ≤ 0, such that GH ∈ �8+ 9 ,U+V for G ∈ �8,U and H ∈ � 9 ,V . Furthermore, we
say that a cdga (�, 3) has positive weights if the underlying cga �∗ has positive weights,
and the differential is homogeneous with respect to those weights, that is, 3G ∈ �8+1,U for
G ∈ �8,U .

Now let (�, 3) be a minimal cdga generated in degree one, endowed with the canon-
ical filtration {�8}8≥0 constructed in (4.3), where each sub-cdga �8 is given by a Hirsch
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extension of the form �8−1 ⊗
∧
+8. The underlying cga � possesses a natural set of posi-

tive weights, which we will refer to as the Hirsch weights: simply declare+8 to have weight
8, and extend those weights to � multiplicatively. We say that the cdga (�, 3) has positive

Hirsch weights if the differential 3 is homogeneous with respect to those weights. If this
is the case, each sub-cdga �8 also has positive Hirsch weights.

Lemma 4.10 ([132]). Let � be a minimal cdga generated in degree one, with dual Lie

algebra L = L(�). Then � has positive Hirsch weights if and only if L = ĝr(L).

The next example (extracted from [132]) shows that the hypothesis of Lemma 4.10 is
more restrictive than the Lie algebra L = L(�) being filtered-formal.

Example 4.11. Let g be the 5-dimensional Lie algebra with basis 41, . . . , 45 and with Lie
brackets given by [41, 42] = 43 − 44/2 − 45, [41, 43] = 44, [42, 43] = 45, and [48 , 4 9 ] = 0,
otherwise. It is readily verified that g is filtered-formal, although the differential of the
1-minimal cdga � =

∧
g∨ is not homogeneous on the Hirsch weights.

If a minimal cdga is generated in degree 1 and has positive weights, but these weights
do not coincide with the Hirsch weights, then the dual Lie algebra need not be filtered-
formal. This phenomenon is illustrated in the next example, adapted from [34], [132].

Example 4.12. Let g be the nilpotent, 5-dimensional Lie algebra with non-zero Lie brack-
ets given by [41, 43] = 44 and [41, 44] = [42, 43] = 45. The center of g is 1-dimensional,
generated by 45, while the center of gr(g) is 2-dimensional, generated by 42 and 45. There-
fore, g � gr(g), and so g is not filtered-formal. The 1-minimal cdga � =

∧
g∨ does have

positive weights, given by the index of the chosen basis, but � does not admit positive
Hirsch weights.

5. Lie algebras and filtered formality

5.1. Graded Lie algebras

Once again, let us fix a ground field k of characteristic 0. Let g be a Lie algebra over k;
that is, a k-vector space g endowed with an alternating bilinear operation, [ , ] : g × g→ g,
that satisfies the Jacobi identity. We say that g is a graded Lie algebra if g decomposes
as g =

⊕
8≥1 g8 , the Lie bracket is compatible with the grading, and the Lie identities

are satisfied with the appropriate signs. A morphism of graded Lie algebras is a k-linear
map i : g→ h which preserves the Lie brackets and the degrees; in particular, i induces
k-linear maps i8 : g8 → h8 for all 8 ≥ 1.

The most basic example of a graded Lie algebra is constructed as follows. Let + a
k-vector space. The tensor algebra ) (+) has a natural Hopf algebra structure, with comul-
tiplication Δ and counit Y the algebra maps given by Δ({) = { ⊗ 1 + 1 ⊗ { and Y({) = 0, for
{ ∈ + . The free Lie algebra on + is the set of primitive elements in the tensor algebra; that
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is, Lie(+) = {G ∈ ) (+) | Δ(G) = G ⊗ 1 + 1 ⊗ G}, with Lie bracket [G, H] = G ⊗ H − H ⊗ G
and grading induced from ) (+).

A Lie algebra g is said to be finitely generated if there is an epimorphism i : Lie(+) →
g for some finite-dimensional k-vector space + . If, moreover, the Lie ideal r = ker(i)
is finitely generated as a Lie algebra, then g is called finitely presented. Now suppose
all elements of + are assigned degree 1 in ) (+). Then the inclusion ] : Lie(+) → ) (+)
identifies Lie1 (+) with )1 (+) = + . Furthermore, ] maps Lie2 (+) to )2 (+) = + ⊗ + by
sending [{, |] to { ⊗ | − | ⊗ { for each {, | ∈ + ; we thus may identify Lie2(+) � + ∧ +
by sending [{, |] to { ∧ |.

If g = Lie(+)/r, with + a (finite-dimensional) vector space concentrated in degree 1,
then we say g is (finitely) generated in degree 1. If, moreover, the Lie ideal r is homoge-
neous, then g is a graded Lie algebra. In particular, if g is finitely generated in degree 1
and the homogeneous ideal r is generated in degree 2, then we say g is a quadratic Lie

algebra.

5.2. Filtrations

A filtration F on a Lie algebra g is a nested sequence of Lie ideals, g = F1(g) ⊃ F2(6) ⊃
· · · . A well-known such filtration is the derived series, with terms F8 (g) = g(8−1) induc-
tively defined by g(0) = g and g(8) = [g(8−1) , g(8−1) ] for 8 ≥ 1. Clearly, the derived series
is preserved by Lie algebra maps, and the quotient Lie algebras g/g(8) are solvable. More-
over, if g is a graded Lie algebra, all these solvable quotients inherit a graded Lie algebra
structure.

The existence of a filtration F on a Lie algebra g makes g into a topological vector
space, by defining a basis of open neighborhoodsof an element G ∈ g to be {G + F: (g)}:∈N .
The fact that each basis neighborhood F: (g) is a Lie subalgebra implies that the Lie
bracket map [ , ] : g× g→ g is continuous; thus, g is, in fact, a topological Lie algebra. We
say that g is complete (respectively, separated) if the underlying topological vector space
enjoys those properties.

Every ideal a of g inherits a filtration, given by F: (a) ≔ F: (g) ∩ a. Likewise, the
quotient Lie algebra, g/a, has a naturally induced filtration with terms F: (g)/F: (a). Let-
ting a be the closure of a in the filtration topology, we have that a is a closed ideal of g.
Moreover, by the continuity of the Lie bracket, [ā, r̄] = [a, r]. Finally, if g is complete (or
separated), then g/a is also complete (or separated).

For each 9 ≥ :, there is a canonical projection, g/F9 (g) → g/F: (g), compatible with
the projections from g to its quotient Lie algebras g/F: (g). The completion of the Lie
algebra g with respect to the filtration F is defined as the limit of this inverse system,
ĝ = lim←−−: g/F: (g). Using the fact that F: (g) is an ideal of g, it is readily seen that ĝ

is a Lie algebra, with Lie bracket defined componentwise. Furthermore, ĝ has a natural
inverse limit filtration, F̂ , whose terms F̂: (ĝ) are equal to �F: (g) = lim←−−8≥: F: (g)/F8 (g).
Observe that F̂: (ĝ) = F: (g), and so each term of the filtration F̂ is a closed Lie ideal



Formality and finiteness in rational homotopy theory 21

of ĝ. Furthermore, the Lie algebra ĝ, endowed with this filtration, is both complete and
separated.

Let ] : g → ĝ be the canonical map to the completion. Then ] is a morphism of Lie
algebras, preserving the respective filtrations. Clearly, ker(]) = ⋂

:≥1 F: (g); hence, ] is
injective if and only if g is separated. Moreover, ] is surjective if and only if g is complete.

5.3. Filtered Lie algebras

A filtered Lie algebra (over the field k) is a Lie algebra g endowed with a decreasing
filtration F = {F: (g)}:≥1 by k-vector subspaces, satisfying the condition

[F: (g), Fℓ (g)] ⊆ F:+ℓ (g) (5.1)

for all :, ℓ ≥ 1. This condition implies that each subspace F: (g) is a Lie ideal, and so, in
particular, F is a Lie algebra filtration. Let

grF (g) ≔
⊕

:≥1F: (g)/F:+1(g) (5.2)

be the corresponding associated graded vector space. Condition (5.1) implies that the Lie
bracket map on g descends to a map [ , ] : grF (g) × grF (g) → grF (g) which makes grF (g)
into a graded Lie algebra, with graded pieces given by the decomposition (5.2).

A morphism of filtered Lie algebras is a linear map q : g→ h preserving Lie brackets
and the given filtrations, F and G. Such a map induces morphisms between nilpotent quo-
tients, q: : g/F:+1 (g) → h/G:+1 (h), and a morphism of associated graded Lie algebras,
gr(q) : grF (g) → grG (h).

If g is a filtered Lie algebra with a multiplicative filtration F as in (5.1), then its
completion, ĝ, is again a filtered Lie algebra with the completed multiplicative filtration F̂ .
By construction, the canonical map to the completion, ] : g→ ĝ, is a morphism of filtered

Lie algebras. It is readily seen that the induced morphism, gr(]) : grF (g) → grF̂ (ĝ), is an
isomorphism. Moreover, if g is both complete and separated, then the map ] : g→ ĝ itself
is an isomorphism of filtered Lie algebras. More generally, if q : g→ h is a morphism of
complete, separated, filtered Lie algebras, and gr(q) is an isomorphism, then, as noted in
[132, Lemma 2.1], q is also an isomorphism.

5.4. The degree completion

Every Lie algebra g comes equipped with a lower central series (LCS) filtration, {W= (g)}=≥1.
This filtration is defined inductively by W1 (g) = g and W= (g) = [W=−1 (g),g] for = ≥ 2. This is
a multiplicative filtration, and if {F= (g)}=≥1 is another such filtration, then W= (g) ⊆ F=(g),
for all = ≥ 1. Lie algebra morphisms preserve LCS filtrations, and the quotient Lie alge-
bras g/W= (g) are nilpotent. We shall write gr(g) for the associated graded Lie algebra and
ĝ for the completion of g with respect to the LCS filtration. Furthermore, we shall take
Ŵ= = W= as the terms of the canonical filtration on ĝ.
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Every graded Lie algebra, g =
⊕

8≥1 g8 , has a canonical decreasing filtration induced
by the grading, F= (g) ≔

⊕
8≥= g8 . Moreover, if g is generated in degree 1, then this fil-

tration coincides with the LCS filtration. In particular, the associated graded Lie algebra
with respect to F coincides with g. In this case, the completion of g with respect to the
lower central series (or, degree) filtration is called the degree completion of g, and is sim-
ply denoted by ĝ. It is readily seen that ĝ �

∏
8≥1 g8 . Therefore, the morphism ] : g→ ĝ is

injective, and induces an isomorphism between g and gr(ĝ).

Lemma 5.1 ([132]). Suppose L is a free Lie algebra generated in degree 1 and r is a

homogeneous ideal. Then the projection L։ L/r induces an isomorphism L̂/r �−−→ L̂/r.

5.5. Filtered-formality

We now consider in more detail the relationship between a filtered Lie algebra g and the
completion of its associated graded Lie algebra, ĝr(g), equipped with the inverse limit fil-
tration. Note that both Lie algebras share the same associated graded Lie algebra, namely,
gr(g). In general, though, g may fail to be isomorphic to ĝr(g). Of course, this happens
if g is not complete or separated, but it may happen even in the case when g is a (finite-
dimensional) nilpotent Lie algebra.

Definition 5.2 ([132]). A complete, separated, filtered Lie algebra g is filtered-formal

if there is a filtered Lie algebra isomorphism, g � ĝr(g), which induces the identity on
associated graded Lie algebras.

If g is a filtered-formal Lie algebra, there exists a graded Lie algebra h such that g is
isomorphic to ĥ =

∏
8≥1 h8 . Conversely, if g = ĥ is the completion of a graded Lie algebra

h =
⊕

8≥1 h8 , then g is filtered-formal. Moreover, if h has homogeneous presentation h =

Lie(+)/r, with + finitely generated and concentrated in degree 1, then, by Lemma 5.1, the
complete, filtered Lie algebra g =

∏
8≥1 h8 has presentation g = L̂ie(+)/r. Some sufficient

conditions for filtered formality are given in the following proposition.

Proposition 5.3 ([132]). Let g be a complete, separated, filtered Lie algebra. Suppose one

of the following two conditions is satisfied.

(1) There is a graded Lie algebra h and an isomorphism g � ĥ preserving filtrations.

(2) The graded Lie algebra gr(g) is generated in degree 1 and there is a morphism of

filtered Lie algebras, q : g→ ĝr(g), such that gr1(q) is an isomorphism.

Then g is filtered-formal.

As shown in [132], filtered-formality enjoys a descent property, provided some mild
finiteness hypotheses are satisfied. As usual, all the ground fields will be of characteristic
0. First, let us record a straightforward lemma, which follows from the fact that completion
commutes with tensor products.

Lemma 5.4. Let g be a filtered-formal Lie algebra over a field k. If k ⊂ K is a field

extension, then the K-Lie algebra g ⊗k K is also filtered-formal.
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The next theorem generalizes a result of Cornulier [34]; its proof is based in part on
work of Enriquez [47] and Maassarani [90].

Theorem 5.5 ([132]). Let g be a complete, separated, filtered k-Lie algebra such that

gr(g) is finitely generated in degree 1, and let k ⊂ K be a field extension. Then g is filtered-

formal if and only if the K-Lie algebra g ⊗k K is filtered-formal.

6. Lower central series and Malcev Lie algebras

6.1. Lower central series

Let � be a group. Given subgroups �1, �2 ≤ �, their commutator, [�1, �2], is the sub-
group of � generated by all elements of the form [G1, G2] ≔ G1G2G

−1
1 G−1

2 with G8 ∈ �8. The
lower central series (LCS) of the group, {W= (�)}=≥1, is defined inductively by W1 (�) =�
and W=+1 (�) = [W= (�), �]. This is an #-series, in the sense of Lazard [84], that is,
[W= (�), W<(�)] ⊆ [W<+= (�)] for all <,= ≥ 1. It follows that each subgroup W= (�) is nor-
mal in �; moreover, each LCS quotient W= (�)/W=+1 (�) lies in the center of �/W=+1 (�),
and thus is an abelian group. For instance, W2(�) = [�,�] is the derived (or, commutator)
subgroup and �/W2 (�) = �ab is the abelianization of �.

If W= (�) ≠ 1 but W=+1 (�) = 1, then� is said to be an =-step nilpotent group; in general,
though, the LCS filtration does not terminate. For each = ≥ 2, the factor group �/W= (�)
is the maximal (= − 1)-step nilpotent quotient of �.

The direct sum of the LCS quotients, gr(�) =
⊕

=≥1 gr= (�), acquires the structure of
a graded Lie algebra over Z, called the associated graded Lie algebra of �. The addition
in gr(�) is induced from the group multiplication and the Lie bracket is induced from the
group commutator. For instance, if � = �= is a finitely generated free group of rank = ≥ 1,
then gr(�=) = Lie(Z=), the free Lie algebra on = generators.

If k is a field of characteristic 0, then gr(�; k) ≔
⊕

=≥1 gr= (�) ⊗Z k is a graded Lie
algebra over k. We note that both the assignments � { gr(�) and � { gr(�; k) are
functorial.

6.2. Malcev completion

A group� is said to be rational (or, uniquely divisible) if the power map�→�, 6 ↦→ 6= is
a bĳection, for every = ≥ 1. The rational abelian groups are precisely the Q-vector spaces.
A natural way to rationalize an abelian group � is to map it to � ⊗Z Q via 0 ↦→ 0 ⊗ 1, with
this map being universal for homomorphisms of � into uniquely divisible abelian groups.

In work of Malcev [93], Lazard [84], and Hilton [71] (see also [22], [72], [74]), this
construction was extended to arbitrary nilpotent groups. The Malcev completion functor is
left adjoint to the embedding of the category of rational nilpotent groups into the category
of nilpotent groups. Thus, if # is a nilpotent group, its Malcev completion (or, rational-
ization) is a rational nilpotent group, denoted # ⊗ Q, that comes endowed with a map
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^ : # → # ⊗ Q which is universal for homomorphisms of � into uniquely divisible nilpo-
tent groups. Moreover, the kernel of ^ is equal to Tors(#), the torsion subgroup of # , and
the induced map, ^∗ : Hom(# ⊗ Q,  ) → Hom(#,  ), is an isomorphism for all rational
nilpotent groups  . Malcev completion is an exact functor, which induces isomorphisms
�∗ (#,Q) � �∗(# ⊗ Q,Z). The quotient #/Tors(#) is a torsion-free nilpotent group that
has the same rationalization as # . If # is finitely generated, then # ⊗ Q is a nilpotent Lie
group defined over Q, with integral form #/Tors(#) and whose Lie algebra, Lie(# ⊗ Q),
is nilpotent.

We now turn to an arbitrary group�. The succesive nilpotent quotients of � assemble
into a tower of the form

· · · �/W4 (�) �/W3 (�) �/W2 (�) 1. (6.1)

Replacing in this tower each nilpotent quotient by its rationalization and taking the inverse
limit of this directed system, we obtain a prounipotent, filtered Lie group over Q,

�Q ≔ lim←−−= (�/W= (�) ⊗ Q), (6.2)

which is called the Malcev completion (or, the prounipotent completion) of the group �.
We denote by ^ : �→�Q the canonical homomorphism from� to its rational completion
and note that the assignment � { �Q is functorial.

The pronilpotent Lie algebra

m(�) := lim←−−= Lie(�/W= (�) ⊗ Q), (6.3)

is called the Malcev Lie algebra of �. This Lie algebra comes endowed with the inverse
limit filtration, which makes it a complete, separated, filtered Lie algebra over Q. As
before, the assignment� { m(�) is functorial. Moreover, if � is finitely generated, then
m(�) is a finitely generated Lie algebra.

6.3. Quillen’s construction

A different approach was taken by Quillen in [119, Appendix A]; we recall now his con-
struction of the Malcev completion and the Malcev Lie algebra, building on the treatment
from [104], [108], [96], [52], and [132].

A Malcev Lie algebra is a Lie algebra m over a field of characteristic 0, endowed
with a decreasing, complete vector space filtration F = {F8}8≥1 such that F1 = m and
[F8 , F9 ] ⊂ F8+ 9 , for all 8, 9 , and with the property that the associated graded Lie algebra,
gr(m) =

⊕
8≥1 F8/F8+1, is generated in degree 1. For example, the completion ĝ of a Lie

algebra g with respect to the lower central series filtration {W8 (g)}8≥1, endowed with the
canonical completion filtration, is a Malcev Lie algebra.

Given a group �, the group algebra Q[�] has a natural Hopf algebra structure, with
comultiplication map Δ : Q[�] → Q[�] ⊗ Q[�] given by Δ(6) = 6 ⊗ 6, and counit the
augmentation map Y : Q[�] → Q given by Y(6) = 1. An element G ∈ Q[�] is said to
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be group-like if Δ(G) = G ⊗ G and primitive if Δ(G) = G ⊗ 1 + 1 ⊗ G; under the inclusion
� ↩→ Q[�], the set of all group-like elements gets identified with �. Let � = ker(Y) be
the augmentation ideal of, and let

�Q[�] = lim←−−
A

Q[�]/�A (6.4)

be the completion of Q[�] with respect to the filtration by the powers of this ideal. Define
the completed tensor product �Q[�] ⊗̂ �Q[�] as the completion of Q[�] ⊗ Q[�] with
respect to the natural tensor product filtration. Applying the �-adic completion functor to
the map Δ yields a comultiplication map, Δ̂ : �Q[�] → �Q[�] ⊗̂ �Q[�], which makes �Q[�]
into a complete Hopf algebra. As shown by Quillen, there is a natural, filtration-preserving
isomorphism,

m(�) � Prim
(�Q[�]

)
, (6.5)

between the Malcev Lie algebra of � and the Lie algebra of primitive elements in �Q[�],
with Lie bracket given by [G, H] = GH − HG.

The set of all primitive elements in gr(Q[�]) forms a graded Lie algebra, which is
isomorphic to gr(�) ⊗ Q. An important connection between the Malcev Lie algebra and
the associated graded Lie algebra of � was discovered by Quillen, who showed in [118]
that there is a natural isomorphism of graded Lie algebras,

gr(m(�)) � gr(�;Q). (6.6)

The Malcev completion �Q may be identified with the set consisting of all group-
like elements in the Hopf algebra �Q[�]. This is a group which comes endowed with a
complete, separated filtration, whose =-th term is �Q ∩ (1 + �̂=). As explained in [96],
there is a one-to-one, filtration-preserving correspondence between primitive elements
and group-like elements of �Q[�] via the exponential and logarithmic maps,

�Q ⊂ 1 + �̂ �̂ ⊃ m(�).
log

exp

(6.7)

Passing to associated graded objects and using (6.6), we find that gr(�Q) � gr(�;Q); in
particular, �1(�Q) = �1(�,Q).

6.4. Multiplicative expansions and Taylor expansions

Let� be a group. Given a map 5 : �→ ', where ' is a ring, we will denote by 5̄ : Q[�] →
' its linear extension to the group algebra. A (multiplicative) expansion of � is a map

� : � ĝr(Q[�]) (6.8)

such that the linear extension �̄ : Q[�] → ĝr(Q[�]) is a filtration-preserving algebra mor-
phism with the property that gr(�̄) = id. Alternatively, a map as in (6.8) is an expansion
if it is a (multiplicative) monoid map and the following property holds: If 5 ∈ � : \ � :+1,
then �̄ ( 5 ) starts with [ 5 ] ∈ � :/� :+1; that is, �̄ ( 5 ) = (0, . . . , 0, [ 5 ], ∗, ∗, . . . ).
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Definition 6.1 ([8], [133]). An expansion � : �→ ĝr(Q[�]) is called a Taylor expansion

if it sends each element of � to a group-like element of ĝr(Q[�]); that is, Δ̄(� (6)) =
� (6)⊗̂� (6), for all 6 ∈ �.

It is shown in [133] that a Taylor expansion � : �→ ĝr(Q[�]) induces a filtration-pre-
serving isomorphism of complete Hopf algebras, �̂ : �Q[�] → ĝr(Q[�]), such that gr(�̂)
is the identity on gr(Q[�]). Conversely, a filtration-preserving isomorphism of complete
Hopf algebras, q : �Q[�] → ĝr(Q[�]), induces a Taylor expansion � : � → ĝr(Q[�]).
These facts may be summarized as follows.

Theorem 6.2 ([133]). The assignment � { �̂ establishes a one-to-one correspondence

between Taylor expansions � → ĝr(Q[�]) and filtration-preserving isomorphisms of

complete Hopf algebras �Q[�] → ĝr(Q[�]) for which the associated graded morphism

is the identity on gr(Q[�]).

This theorem generalizes a result of Massuyeau, from finitely generated free groups
to arbitrary finitely generated groups. As a corollary, we obtain the following criterion for
the existence of a Taylor expansion.

Corollary 6.3 ([133]). A finitely generated group � has a Taylor expansion if and only if

there is an isomorphism of filtered Hopf algebras, �Q[�] � ĝr(Q[�]).

Now suppose � admits a finite presentation of the form � = �/'. Starting from a
Taylor expansion for the finitely generated free group �, one may find a presentation for
the Malcev Lie algebra m(�; k), using the approach of Papadima [103] and Massuyeau
[96]. This is summarized in the following theorem.

Theorem 6.4 ([96], [103]). Let � be a group with generators G1, . . . , G= and relators

A1, . . . , A< and let � be a Taylor expansion of the free group � = 〈G1, . . . , G=〉. There exists

then a unique filtered Lie algebra isomorphism

m(�) � L̂ie(Q=)/〈〈,〉〉,

where 〈〈,〉〉 denotes the closed ideal of the completed free Lie algebra L̂ie(Q=) generated

by the subset {log(� (A1)), . . . , log(� (A<))}.

6.5. Filtered formality

Following [132], we say that a group� is filtered formal if its Malcev Lie algebra is filtered
formal, that is, m(�) is isomorphic (as a filtered Lie algebra) to the degree completion of
its associated graded Lie algebra, gr(m(�)). In view of (6.6), this condition is equivalent
to m(�) � ĝr(�;Q). It follows from Lemma 5.1 that � is filtered formal if and only if
m(�) admits a homogeneous presentation.

For instance, if � = �=, then m(�=) � L̂ie(Q=), and so �= is filtered formal. Moreover,
if � is a torsion-free, 2-step nilpotent group for which �ab is torsion-free (e.g., if � =
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�=/W3 (�=) with = ≥ 2), then � is filtered-formal. On the other hand, there are torsion-
free, 3-step nilpotent groups that are not filtered formal; see [132].

As the next theorem shows, the Taylor expansions of a finitely generated group �
are closely related to the isomorphisms between the Malcev Lie algebra and the LCS
completion of the associated graded Lie algebra of �.

Theorem 6.5 ([133]). There is a one-to-one correspondence between Taylor expansions

� → ĝr(Q[�]) and filtration-preserving Lie algebra isomorphisms m(�) → ĝr(�;Q)
inducing the identity on gr(�;Q).

Using this theorem, we obtain an alternate interpretation of filtered-formality.

Corollary 6.6 ([133]). A finitely generated group � is filtered-formal if and only if � has

a Taylor expansion.

6.6. The RTFN property and Taylor expansions

A group � is said to be residually torsion-free nilpotent (for short, RTFN) if for any
6 ∈ �, 6 ≠ 1, there exists a torsion-free nilpotent group& and an epimorphism k : �→&

such that k(6) ≠ 1. The property of being residually torsion-free nilpotent is inherited by
subgroups and is preserved under direct products and free products.

The RTFN property may be expressed in terms of the rational lower central series of
�, whose terms are given by

WQ= (�) = {6 ∈ � | 6< ∈ W= (�), for some < ∈ N}. (6.9)

The group � is RTFN if and only if the intersection of its rational lower central series,
W
Q
l (�) ≔

⋂
=≥1 W

Q
= (�), is the trivial subgroup. We refer to [129] for alternate definitions

and more properties of this #-series.
As is well known, a group � is residually torsion-free nilpotent if and only if the

group-algebraQ[�] is residually nilpotent, that is,
⋂
=≥1 �

= = {0}, where � is the augmen-
tation ideal. Therefore, if � is finitely generated, the RTFN condition is equivalent to the
injectivity of the canonical map to the prounipotent completion, ^ : �→ �Q, where recall
�Q is the set of group-like elements in �Q[�].

If� is residually nilpotent and gr= (�) is torsion-free for all = ≥ 1, then� is residually
torsion-free nilpotent. Residually torsion-free nilpotent implies residually nilpotent, which
in turn, implies residually finite. Examples of residually torsion-free nilpotent groups
include torsion-free nilpotent groups, free groups, and surface groups.

Proposition 6.7 ([133]). A finitely generated group � has an injective Taylor expansion

if and only if � is residually torsion-free nilpotent and filtered-formal.
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7. Holonomy Lie algebras

7.1. The holonomy Lie algebra of a cdga

Let � = (�∗, 3) be a 1-finite k-cdga, that is, a cdga over a field k of characteristic 0 with
�0 = k and dimk �1 < ∞. Writing �8 = Hom(�8 , k) for the k-duals of the graded pieces,
we let `∨ : �2 → �1 ∧ �1 be the k-dual of the multiplication map ` : �1 ∧ �1 → �2,
and we let 3∨ : �2 → �1 be the dual of the differential 3 : �1 → �2. We shall denote by
Lie(�1) the free Lie algebra on the k-vector space �1, and we will identify Lie1(�1) = �1

and Lie2(�1) = �1 ∧ �1.

Definition 7.1 ([92]). The holonomy Lie algebra of a 1-finite cdga � = (�∗, 3) is the
quotient of Lie(�1) by the ideal generated by the image of the map m� = 3∨ + `∨,

h(�) = Lie(�1)/〈im(m�)〉. (7.1)

Clearly, this construction is functorial. Indeed, let i : �→ � is a morphism of cdgas
as above, and write i8 = (i8)∨ : �8 → �8 . Then the induced map, Lie(i1) : Lie(�1) →
Lie(�1), factors through a morphism of Lie algebras, h(i) : h(�) → h(�). Observe that
the Lie algebra h(�) depends only on the sub-cdga k · 1 ⊕ �1 ⊕ (3 (�1) + `(�1 ∧ �1)) of
the truncation �≤2. Therefore, h(�) is finitely presented.

In general, though, the ideal generated by im(m�) is not homogeneous, and so the Lie
algebra h(�) does not inherit a grading from Lie(�1).

Example 7.2. Let � =
∧(01, 02, 03) be the exterior algebra on generators 08 in degree

1, endowed with the differential 3 given by 301 = 302 = 0 and 303 = 01 ∧ 02. Identify
Lie(�1) with the free Lie algebra on dual generators G1, G2, G3. Then the ideal 〈im(m�)〉 is
generated by G3 + [G1, G2], [G1, G3], and [G2, G3], and thus is not homogeneous.

In the above example, h(�) still admits the structure of a graded Lie algebra, with G1

and G2 in degree 1, and G3 in degree 2. Nevertheless, using a construction from [132], we
may define a minimal, finite cdga � for which h(�) does not admit any grading compati-
ble with the lower central series filtration.

Example 7.3. Let � =
∧(01, . . . , 05), with |08 | = 1 and differential 3 given by 304 =

01 ∧ 03, 305 = 01 ∧ 04 + 02 ∧ 03, and 308 = 0, otherwise. Then, as shown in [132, Example
10.5], h(�) is not isomorphic to gr(h(�)), its associated graded Lie algebra with respect
to the LCS filtration.

7.2. The holonomy Lie algebra of a cga

Now suppose 3 = 0, so that � is a graded, graded-commutative, 1-finite k-algebra. Then
h(�) = Lie(�1)/〈im(`∨)〉 is the classical holonomy Lie algebra introduced by K.T. Chen
in [31] and further studied in [77], [94], [104], [131], and [132]. Clearly, h(�) inherits
a natural grading from the free Lie algebra Lie(�1), which is compatible with the Lie
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bracket. Consequently, h(�) is a finitely-presented, graded Lie algebra, with generators in
degree 1 and relations in degree 2; in other words, h(�) is a quadratic Lie algebra.

A graded, 1-finite k-algebra � may be realized as the quotient ) (+)/� , where ) (+) is
the tensor algebra on a finite-dimensional k-vector space + by a homogeneous, two-sided
ideal � . The algebra � is said to be quadratic if �1 = + and the ideal � is generated in
degree 2, i.e., � = 〈�2〉, where �2 = � ∩ (+ ⊗ +).

Given a quadratic algebra � = ) (+)/� , we identify +∨ ⊗ +∨ � (+ ⊗ +)∨, and define
the quadratic dual of � to be the algebra �! = ) (+∨)/�⊥, where �⊥ is the ideal of ) (+∨)
generated by the vector subspace (�2)⊥ ≔ {U ∈ +∨ ⊗ +∨ | U(�2) = 0}. Clearly, �! is also
a quadratic algebra, and (�!)! = �. For any graded algebra of the form � = ) (+)/� , we
may define its quadrature closure as q� = ) (+)/〈�2〉.

For a Lie algebra g, we let* (g) be its universal enveloping algebra. This is the filtered,
associative algebra obtained as the quotient of the tensor algebra ) (g) by the (two-sided)
ideal generated by all elements of the form 0 ⊗ 1 − 1 ⊗ 0 − [0, 1] with 0, 1 ∈ g.

Proposition 7.4 ([115], [132]). Let � be a commutative graded k-algebra such that �0 = k

and dimk �1 < ∞. Then* (h(�)) is a quadratic algebra, and* (h(�)) = (q�)!.

Now suppose g is a finitely generated graded Lie algebra generated in degree 1. Then,
as shown in [132], there is a unique, functorially defined quadratic Lie algebra, qg, such
that* (qg) = q* (g). Therefore, by Proposition 7.4, we have that h((q* (g))!) = qg.

Work of Löfwall [87] yields another interpretation of the universal enveloping algebra
of the holonomy Lie algebra.

Proposition 7.5 ([87]). Let [Ext1�(k, k)] :=
⊕

8≥0 Ext8�(k, k)8 be the linear strand in the

Yoneda algebra of �. Then* (h(�)) � [Ext1�(k, k)].

Applying the Poincaré–Birkhoff–Witt theorem, we infer that the graded ranks of h(�)
are given by ∏

=≥1

(1 − C=)dimk h= (�) =
∑

8≥0

18,8 (�)C8 , (7.2)

where 18,8 (�) = dimk Ext8�(k, k)8.

7.3. The completion of the holonomy Lie algebra of a cga

Let � be a connected k-cga. A 1-minimal modelM1(�) for � may be constructed in a
“formal” way, following the approach outlined by Carlson and Toledo [27] (see also [132]).
For the construction of the full, bigraded minimal model of a cga we refer to Halperin and
Stasheff [68].

As in Section 4.5, start with the cdgasM(1) = (∧(+1),0), where+1 = �
1, andM(2) =

(∧(+1 ⊕+2), 3), where+2 = ker
(
` : �1 ∧ �1→ �2

)
and 3 : +2 ↩→ +1 ∧+1 is the inclusion

map. Now define inductively a cdga M(8) as the Hirsch extension M(8 − 1) ⊗ ∧(+8),
where the k-vector space +8 fits into the short exact sequence

0 +8 �2(M(8 − 1)) im(`) 0, (7.3)
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while the differential 3 includes +8 into +1 ∧ +8−1 ⊂ M(8 − 1). SettingM1(�) equal to⋃
8≥1M(8), the subalgebras {M(8)}8≥1 constitute the canonical filtration (4.3) ofM1(�)

and the differential 3 preserves the Hirsch weights onM1(�). For these reasons, we say
thatM1(�) is the canonical 1-minimal model of �.

The next theorem relates L(M1(�)), the Lie algebra associated toM1(�) under the
adjoint correspondence from Section 4.5 to the degree completion of h(�), the holonomy
Lie algebra of �. A generalization will be given in Theorem 7.8.

Theorem 7.6 ([100], [94], [132]). If � is a 1-finite cga, then L(M1(�)) and �h(�) are

isomorphic as complete, filtered Lie algebras.

Corollary 7.7. If � is a 1-finite cga andM1(�) =
∧(⊕

8≥1+8
)

is the canonical 1-minimal

of �, then dimk h8 (�) = dim+8 for all 8 ≥ 1.

7.4. Holonomy and flat connections

Given a k-cdga (�, 3) and a Lie algebra g, we let F (�, g) be the set of g-valued flat

connections on �, that is, the set of all elements l ∈ �1 ⊗ g satisfying the Maurer–Cartan
equation,

3l + 1
2 [l, l] = 0. (7.4)

Suppose now that � is 1-finite. As shown in [92], the natural isomorphism �1 ⊗ g �−−→
Hom(�1, g) induces a natural identification,

F (�, g) HomLie(h(�), g).� (7.5)

Assuming further that g is finite-dimensional, we let C(g) =
(∧

g∨, 3) be the Cheval-
ley–Eilenberg complex of g. This is the cdga whose underlying graded algebra is the
exterior algebra on the dual k-vector space g∨, and whose differential is the extension by
the graded Leibnitz rule of the dual of the signed Lie bracket, 3 = −V∗, on the algebra gen-
erators, see e.g. [68], [52]. There is then a natural isomorphism �1 ⊗ g

�−−→ Hom(g∨, �1),
which, by [40, Lemma 3.4], induces a natural identification,

F (�, g) Homcdga (C(g), �).� (7.6)

Now let Ĉ be the functor which associates to a finitely generated Lie algebra h the
direct limit of cdgas

Ĉ (h) = lim−−→
=

C(h/W= (h)). (7.7)

This functor sends finite-dimensional central Lie extensions to Hirsch extensions of cdgas.
It follows that Ĉ(h) is a 1-minimal cdga.

Now let (�, 3) be a 1-finite cdga, with holonomy Lie algebra h = h(�). By (7.5), the
identity map of h may be identified with the ‘canonical’ flat connection,

l =
∑

8

G∗8 ⊗ G8 ∈ F (�, h(�)), (7.8)
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where {G8} is a basis for �1 and {G∗8 } is the dual basis for �1. This gives rise to a compatible
family of flat connections, {l= ∈ F (�,h/W= (h))}=≥1. Using the correspondence (7.6), we
obtain a compatible family of cdga maps, 5= : C(h/W= (h)) → �. Passing to the limit, we
arrive at a natural cdga map, 5 : Ĉ(h(�)) → �. The next theorem recovers (in a self-
contained way) results from [16], [17], and [13].

Theorem 7.8 ([113]). If � is a 1-finite cdga, then the classifying map 5 : Ĉ (h(�)) → �

is a 1-minimal model map for �.

Consequently, we have an isomorphismM1(�) � Ĉ(h(�)).

7.5. The holonomy Lie algebra of a group

A construction due to K.-T. Chen [31] and further developed in the works mentioned in
Section 7.2 assigns to every finitely generated group� its holonomy Lie algebra, h(�; k),
which is defined as the holonomy Lie algebra of the cohomology algebra of � with coef-
ficients in a field k of characteristic 0,

h(�; k) ≔ h
(
�∗(�, k)

)
. (7.9)

By the discussion from Section 7.2, we have that h(�; k) = Lie(�1(�, k))/〈`∨�〉, where
`� : �1(�, k) ∧ �1(�, k) → �2(�, k) is the cup-product map in group cohomology and
`∨� is its k-dual. It is readily seen that the assignment � { h(�; k) is functorial.

The Lie algebra h(�; k) is a finitely presented, quadratic Lie algebra that depends
only on the cup-product map `� . Moreover, as noted in [131], the projection map � ։
�/W= (�) induces isomorphisms h(�; k) �−−→ h(�/W= (�); k) for all = ≥ 3. Consequently,
the holonomy Lie algebra of � depends only on its second nilpotent quotient, �/W3 (�).

An important feature of the holonomy Lie algebra is its relationship to the associated
graded Lie algebra, as detailed in the next theorem.

Theorem 7.9 ([94], [104], [131]). There exists a natural epimorphism of graded k-Lie

algebras, Φ : h(�; k) ։ gr(�; k), which induces isomorphisms in degrees 1 and 2.

Following [131], [132], we say that a finitely generated group� is graded formal if the
map Φ : h(�; k) ։ gr(�; k) is an isomorphism. This condition is equivalent to gr(�; k)
being a quadratic Lie algebra. As shown in [132], if  ≤ � is a retract of a graded formal
group �, then  is also graded formal.

The next result shows how to find a presentation for h(�; k), given a presentation for
gr(�; k).

Proposition 7.10 ([132]). Let + = �1 (�; k). Suppose the associated graded Lie alge-

bra g = gr(�; k) has presentation Lie(+)/r. Then the holonomy Lie algebra h(�; k)
has presentation Lie(+)/〈r2〉, where r2 = r ∩ Lie2 (+). Furthermore, if � = * (g), then

h(�; k) = h
(
(q�)!

)
.
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8. Algebraic models for spaces

8.1. Rational homotopy equivalences

We start with a definition that goes back to the work of Quillen [119], Bousfield–Guggen-
heim [21], and Halperin–Stasheff [68]. A continuous map between two topological spaces,
5 : -→ . , is said to be a rational quasi-isomorphism if the induced map in rational coho-
mology, 5 ∗ : �∗(.,Q) → �∗ (-,Q), is an isomorphism. A rational homotopy equivalence

between - and . is a sequence of continuous maps (going either way) connecting the two
spaces via rational quasi-isomorphisms. We say that - and . are rationally homotopy

equivalent (or, have the same rational homotopy type) if such a zig-zag of rational quasi-
isomorphisms exists, in which case we write - ≃Q . . The purpose of rational homotopy
theory, then, is to classify topological spaces up to this equivalence relation.

One of the motivations of Sullivan’s work in this field was the idea that the rational
homotopy type of a simply connected manifold, together with suitable characteristic class
and integral data determines the diffeomorphism type up to finite ambiguity. For instance,
he showed in [137, Theorem 13.1] that closed, simply connected, smooth manifolds can
be classified up to finite ambiguity in terms of their rational homotopy type, rational Pon-
trjagin classes, bounds on torsion, and certain integral lattice invariants. This important
result was subsequently refined by Kreck and Triantafillou [79] (under some partial for-
mality assumptions) and Crowley and Nordström [35] (under some higher connectivity
assumptions).

8.2. Sullivan algebras of piecewise polynomial differential forms

Let (�∗ (-, k), 3) be the singular cochain complex of a space - , with coefficients in a
field k of characteristic 0. This is, in fact, a differential graded algebra, with multiplication
given by the cup-product. By definition, the cohomology of this k-dga is the cohomology
algebra �∗(-,k); this is a cga, although the cochain algebra itself is not a cdga (except in
some very special situations). More generally, we say that a k-dga (�, 3�) is a dga model
for - if it is weakly equivalent (through dgas) to (�∗ (-, k), 3).

In his seminal paper [137], Sullivan associated in a functorial way to every space -
a rational, commutative dga, denoted by (�PL (-), 3). When - is a simplicial complex,
the elements of this cdga may be viewed as compatible collections of forms on the sim-
plices of - , which are sums with rational coefficients of monomials in the barycentric
coordinates. Integration defines a chain map from �PL (-) to �∗ (-,Q) which induces an
isomorphism in cohomology. In fact, Sullivan’s algebra (�PL (-), 3) is weakly equivalent
(through dgas) with the cochain algebra (�∗ (-, Q), 3); moreover, under the resulting
identification of graded algebras, �∗(�PL (-)) � �∗ (-,Q), the induced homomorphisms
in cohomology correspond, see [52, Corollary 10.10].

We say that a k-cdga (�, 3�) is a model over k for the space - if � is weakly equiva-
lent (through cdgas) to �PL(-) ⊗Q k; in particular,�∗ (�) � �∗(-,k). In view of Theorem
2.2, we may also allow the weak equivalence to go through dgas in this definition. For
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instance, if - is a smooth manifold, then the de Rham algebra Ω∗dR(-) of smooth forms
on - is a model of - over R, and if - is a simplicial complex, then a rational model for -
is �s (-), the algebra of piecewise polynomialQ-forms on the simplices of - . We refer to
[52–54, 139] for more details.

By the functoriality of the Sullivan algebra, a rational quasi-isomorphism 5 : - →
. induces a quasi-isomorphism �PL ( 5 ) : �PL (. ) → �PL(-); therefore, if - ≃Q . , then
�PL (-) ≃ �PL (. ). Consequently, the weak isomorphism type of �PL (-) depends only on
the rational homotopy type of - . As another consequence, the existence of a finite model
for a space - is an invariant of rational homotopy type, and thus, of homotopy type.

Remark 8.1. In [137], Sullivan showed that there exist smooth manifolds whose rational
models are not weakly isomorphic, but which become weakly isomorphic when tensored
with R. Such failure of descent from real homotopy type to rational homotopy type may
even occur with models endowed with 0-differentials.

8.3. Sullivan minimal models

A minimal model for a connected space - , denotedM(-), is a minimal model for the
Sullivan algebra �PL (-). By Theorem 4.6, this a minimal cdga, which always exists and
is unique up to isomorphism. Sullivan’s minimal model comes equipped with a cdga map,
d : M(-) → �PL (-), which is a quasi-isomorphism. Moreover, if � ≃ �PL(-) is a con-
nected rational cdga model for - , then there is a quasi-isomorphismM(-) → � which
corresponds to d via the chosen weak equivalence between � and �PL (-). By a previ-
ous remark, the isomorphism type ofM(-) is uniquely defined by the rational homotopy
type of - . It is an open question whether there exist spaces with weakly equivalent cochain
algebras but non-isomorphic minimal models, see [51].

All these notions have partial analogs. Fix an integer @ ≥ 1. A @-model over k for a
space - is a k-cdga (�, 3) which is @-equivalent to �PL (-) ⊗Q k; in particular, �8 (�) �
�8 (-, k), for all 8 ≤ @. A @-minimal model for - , denotedM@ (-), is a @-minimal model
�PL (-); this cdga comes equipped with a @-quasi-isomorphism,

d@ : M@ (-) �PL (-). (8.1)

A map 5 : - → . is said to be a @-rational homotopy equivalence if the induced map
in rational cohomology, 5 ∗ : �∗ (.,Q) → �∗ (-,Q), is an isomorphism in degrees up to
@ and a monomorphism in degree @ + 1. Clearly, such a map induces a @-equivalence,
�PL ( 5 ) : �PL (. ) → �PL (-).

In this context, a basic question was raised in [113]: When does a @-finite space -
admit a @-finite @-model �? It follows from the above considerations that the existence of
a @-finite @-model for a space - is an invariant of @-rational homotopy type, and thus, of
@-homotopy type.
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8.4. Rational completion

In their foundational monograph [22], Bousfield and Kan associated to every space -
its rational completion, Q∞- . This is a rational space (i.e., its homology groups in posi-
tive degrees are Q-vector spaces) which comes equipped with a structure map, :- : - →
Q∞- , with the following property: Given a map 5 : - → . , there is an induced map,
Q∞ 5 : Q∞- → Q∞. , such that Q∞ 5 ◦ :- = :. ◦ 5 . Moreover, the map 5 is a rational
homology equivalence if and only if the map Q∞ 5 is a weak homotopy equivalence.

A space - is called Q-good if the structure map :- : - → Q∞- is a rational quasi-
isomorphism. It has been known for a long time that not all spaces enjoy this property.
Recently, Ivanov and Mikhailov [75] gave the first examples of finite CW-complexes that
are Q-bad: if - =

∨= (1 is a wedge of = ≥ 2 circles, then �2(Q∞-,Q) is non-zero (in fact,
it is uncountable), although of course �2 (-,Q) = 0.

The main connection between Sullivan’s minimal model M(-) and Bousfield and
Kan’s rational completion Q∞- is provided by the following theorem of Bousfield and
Guggenheim [23].

Theorem 8.2 ([23]). Let - be a connected space with finite Betti numbers, and letM(-) =(∧
+, 3) be a minimal model for - over Q. Then c=(Q∞-) � (+=)∨, for all = ≥ 2.

A connected space - is a said to be rationally aspherical (or, a rational  (c, 1) space)
if its rational completion is aspherical, i.e., c= (Q∞-) = 0 for all = ≥ 2. As an application
of the above theorem, we have the following immediate corollary.

Corollary 8.3 ([48], [115]). A connected space - is rationally aspherical if and only if

M(-) �M1(-).

8.5. Nilpotent spaces

For simply-connected spaces and, more generally, for nilpotent spaces, rational homotopy
theory takes a more concrete and approachable form. A path-connected space - is said to
be nilpotent if the fundamental group � = c1(-) is nilpotent and acts nilpotently on the
homotopy groups c= (-) for all = > 1. For instance, all tori are nilpotent, but the Klein
bottle is not; moreover, a real projective space RP= is nilpotent if and only if = is odd.

If - is a nilpotent space, then, as shown in [22], - is Q-good. Moreover, c1(Q∞-) is
isomorphic to c1(-) ⊗ Q—the Malcev completion of the nilpotent group c1(-)—while
c= (Q∞-) � c= (-) ⊗ Q for = ≥ 2, all in a functorial way. In this context, we also have the
following rational analog of Whitehead’s theorem (see also [120]).

Theorem 8.4 ([22]). A pointed map 5 : - → . between two nilpotent spaces is a rational

homotopy equivalence if and only if it induces isomorphisms 5∗ : c=(-) ⊗ Q→ c=(. ) ⊗ Q
for all = ≥ 1.

Assume now that - is a nilpotent CW-complex with finite Betti numbers. Sullivan
proved in [137] that the minimal model (over Q) of such a space is of the formM(-) =
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(∧ +, 3), where + is a graded Q-vector space of finite type. Here are a few standard
examples.

Example 8.5. An odd-dimensional sphere has minimal model M((2=+1) =
(∧(0), 0

)
,

with |0 | = 2= + 1. On the other hand, an even-dimensional sphere has minimal model
M((2=) =

(∧(0, 1), 30 = 12
)
, with 30 = 0, 31 = 02, and |0 | = 2=. Finally, an Eilenberg–

MacLane space of type K(Z, =) has minimal model
(∧(0), 0

)
, with |0 | = =.

If �>= (-) = 0 for some = > 0, we can say a bit more. Pick a vector space decom-
position, M= (-) = /= (M(-)) ⊕ �=. Then the direct sum � =M≥=+1 (-) ⊕ �= is an
acyclic differential graded ideal ofM(-). By construction, �PL (-) is weakly isomorphic
to the cdgaM(-)/�, which is finite-dimensional as a vector space. We summarize this
discussion, as follows.

Theorem 8.6 ([137]). Let - be a nilpotent CW-complex.

(1) If all the Betti numbers of - are finite, then - admits a @-finite @-model, for all @.

(2) If dim�∗(-,Q) < ∞, then - admits a model which is finite-dimensional over Q.

The main application of Sullivan’s theory of minimal models to the rational homotopy
of nilpotent spaces is given by the following theorem.

Theorem 8.7 ([137]). Let - be a connected, nilpotent CW-complex with finite Betti num-

bers, and letM(-) =
(∧
+, 3) be a minimal model for - overQ. Then c= (-) ⊗Q � (+=)∨,

for all = ≥ 2.

An alternative proof of this foundational result was given by Lehmann in [85]. A gen-
eralization was given by Bock [19], who relaxed the hypothesis that c1(-) be nilpotent,
thereby proving a statement first mentioned by Halperin in [67].

Theorem 8.8 ([19]). Let - be a path-connected, triangulable space whose universal cov-

ering exists. Suppose c1(-) has a rationally aspherical classifying space and c=(-) is a

finitely generated nilpotent c1(-)-module, for each = ≥ 2. IfM(-) =
(∧
+, 3) is a minimal

model for - over Q, then c= (-) ⊗ Q � (+=)∨, for all = ≥ 2.

Consider now the rational Hurewicz homomorphisms, hur: : c: (-) ⊗ Q→ �: (-,Q).
If - is =-connected for some = ≥ 1, the above theorem implies that hur: is an isomorphism
for : ≤ 2=, while ker(hur: ) is the Q-span of the Whitehead products for 2= + 1 ≤ : ≤
3= + 1, see [51]. For generalizations of Theorem 8.7 to rationally nilpotent spaces we refer
to [53].

8.6. Models for polyhedral products

We illustrate the general theory with a class of spaces particularly amenable to study
via rational homotopy methods. These spaces, variously known as polyhedral products,
(generalized) moment-angle complexes, or (generalized) Davis–Januszkiewicz spaces, are
constructed as follows (see for instance [38], [7] and references therein).
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Let  be a finite simplicial complex on vertex set [=] = {1, . . . , =}, and let (-, - ′) be a
sequence (-1, -

′
1), . . . , (-=, - ′=) of pairs of spaces. The polyhedral productZ (-, - ′) is

then the subspace of the cartesian product
∏=
8=1 -8 obtained as the union of all subspaces

of the formZf (-, - ′) =
∏=
8=1.8 , where f runs through the simplices of  and .8 = -8 if

8 ∈ f and .8 = - ′8 if 8 ∉ f.
Assume now that all spaces -8, - ′8 are nilpotent CW-complexes of finite type. In [56],

Félix and Tanré describe the rational homotopy type of the corresponding polyhedral prod-
uct, as follows. Let �8 and �′8 be connected, finite-type rational models for -8 and - ′8 , so
that there are quasi-isomorphismsM(-8) → �8 andM(- ′8 ) → �′8 . Suppose there are sur-
jective morphisms i8 : �8 ։ �′8 modeling the inclusions - ′8 ↩→ -8. For each simplex f on
[=], let �f =

∏=
8=1 �8 , with �8 = ker(i8) if 8 ∈ f and �8 = �8 if 8 ∉ f.

Theorem 8.9 ([56]). With asumptions as above, the polyhedral product Z (-, - ′) has

a connected, finite-type cdga model of the form �( ) = (
⊗=

8=1 �8)/� ( ), where � ( ) is

the ideal
∑
f∉ �f . Moreover, if ! ⊂  is a subcomplex, then the inclusionZ! (-, - ′) ↩→

Z (-, - ′) is modelled by the projection �( ) ։ �(!).

Taking homology, this theorem recovers a result from [7]: the cohomology algebra
�∗ (Z (-, - ′),Q) is isomorphic to the quotient (

⊗=
8=1 �

∗ (-8,Q)/� ( ), where � ( ) is
the Stanley–Reisner ideal generated by all the monomials G 91 · · · G 9: with G8 ∈ �∗ (-8,Q)
for which the simplex f = ( 91, . . . , 9: ) is not in  .

8.7. Configuration spaces

A construction due to Fadell and Neuwirth associates to a space - and a positive integer
= the space of ordered configurations of = points in - ,

Conf(-, =) = {(G1, . . . , G=) ∈ -×= | G8 ≠ G 9 for 8 ≠ 9}. (8.2)

The most basic example is the configuration space of = ordered points in C; this is a
classifying space for %=, the pure braid group on = strings, whose cohomology ring was
computed by Arnol’d in the the late 1960s.

The �2-term of the Leray spectral sequence for the inclusion Conf(-, =) ↩→ -×= was
described in concrete terms by Cohen and Taylor [33]. If - is a smooth, complex projective
variety of dimension <, then Conf(-, =) is a smooth, quasi-projective variety; moreover,
as shown by Totaro in [142], the Cohen–Taylor spectral sequence collapses at the �<+1-
term, and the �<-term is a cdga model for the configuration space Conf(-, =). Other
rational models for configuration spaces of smooth projective varieties were constructed
by Fulton–MacPherson [62] and Kříž [80].

Now let " be a closed, simply-connected smooth manifold. Under the assumption
that 12(") = 0, Lambrechts and Stanley [81] showed how to construct a rational model
for Conf(", 2) out of a model for "; as a consequence, the rational homotopy type of
Conf (", 2) depends only on that of " . For configuration spaces of = points, Lambrechts
and Stanley [83] used Theorem 2.4 to associate to every rational model � for " a Q-
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cdga ��(=), which they conjectured to be a rational model for Conf(", =). In [73],
Idrissi proved that ��(=) ⊗Q R is a real model for the configuration space; thus, the real
homotopy type of " determines the real homotopy type of Conf(", =), for all =.

8.8. Rationalization

To every space - , Sullivan [135], [137], [138] associated in a functorial way its ratio-

nalization, denoted -Q; we refer to [21], [53], [51], [120], and [74] for more details on
this construction. The rationalization of - may be viewed as a geometric realization of
the Sullivan minimal model,M(-), for the cdga �PL(-). The space -Q comes equipped
with a structure map, ℎ : - → -Q, which realizes the morphism d : M(-) → �PL (-).

Now suppose - is a connected, pointed CW-complex which is a nilpotent space; then,
as shown in [53], the space -Q is again nilpotent and the map ℎ is a rational homotopy
equivalence. Moreover, if �∗ (-,Q) is of finite type, then the maps ℎ∗ : c=(-) ⊗ Q →
c= (-Q) are isomorphisms, for all = ≥ 2. The nilpotency condition is crucial here. Indeed,
if - = RP2, then c1(-) = Z2 is nilpotent but does not act nilpotently on c2(-) = Z; we
also have that -Q ≃ {∗}, and so the map ℎ∗ : c2(-) ⊗ Q→ c2(-Q) is the zero map.

In general, the Bousfield–Kan completion and the Sullivan rationalization do not agree,
even for nilpotent spaces. Nevertheless, if - is nilpotent and �∗ (-,Q) is of finite type,
then Q∞- = -Q, see [21].

When - is a CW-complex, a more concrete way to construct the rationalization -Q
is via Sullivan’s infinite telescopes, introduced in [135]. For instance, if = is odd, then
(=
Q
≃  (Q, =).
The constructions from Section 6 are related to the rationalizations of spaces, as

follows. Let - be a path-connected space with fundamental group c1(-) = �. Then
M(�;Q) = c1(-Q), the fundamental group of the rationalization of - .

8.9. Equivariant algebraic models

The study of the rational equivariant homotopy type of a space subject to the action of a
finite group goes back to the work of Triantafillou [144] on equivariant minimal models.
We summarize here some recent work from [113] on this subject.

Let Φ be a finite group. The category Φ-cdga (over k) has objects cdgas � endowed
with a compatible Φ-action, while the morphisms are Φ-equivariant cdga maps �→ �.
Given a Φ-cdga �, we let �Φ be the sub-cdga of elements fixed by Φ; there is then a
canonical cdga map �Φ→ �. By definition, a @-equivalence � ≃@ � in Φ-cdga (1 ≤ @ ≤
∞) is a zigzag of Φ-equivariant @-equivalences in cdga. It is readily seen that � ≃@ � in
Φ-cdga implies that �Φ ≃@ �Φ in cdga.

Now suppose Φ acts freely on a space . , and let - = ./Φ be the orbit space. As
is well-known, every CW-complex - has the homotopy type of a simplicial complex  ;
moreover, if - has finite @-skeleton, so does  . Fix such a triangulation of - , and lift
it to the cover . . The corresponding simplicial Sullivan algebras are then related by the
equality �s (-) = �s (. )Φ. Therefore, we have the following result.
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Proposition 8.10 ([113]). Let - be a CW-complex, and let . → - be a finite regular

cover, with group of deck transformations Φ. Let � be a Φ-cdga over k.

(1) Suppose �PL (. ) ⊗Q k ≃@ � in Φ-cdga, for some 1 ≤ @ ≤ ∞. Then �PL(-) ⊗Q k ≃@
�Φ in cdga.

(2) If, moreover, � is @-finite, then �Φ is @-finite.

As a consequence, if. admits an equivariant @-finite @-model, then - admits a @-finite
@-model. The hypothesis from part ((1)) in the above proposition cannot be completely
dropped. Nevertheless, we have the following conjecture regarding algebraic models for
the orbit space - = ./Φ constructed from Φ-equivariant models for . .

Conjecture 8.11 ([113]). Let - be a connected �,-complex, and let . → - be a finite,

regular cover with deck group Φ. Suppose that . has finite Betti numbers. Let � be a Φ-

cdga, and assume that there is a zig-zag of quasi-isomorphisms connecting �PL(. ) ⊗Q k
to � in cdga, such that the induced isomorphism between �∗(., k) and �∗(�) is Φ-

equivariant. Then �Φ is a model for - .

8.10. On the Betti numbers of minimal models

We conclude this section with an obstruction to the existence of a @-finite cdga model �
for a space - , an obstruction expressed in terms of Betti numbers of the @-minimal model
M@ (-) associated to - .

Theorem 8.12 ([113]). Let - be a connected CW-space, and assume that one of the fol-

lowing conditions is satisfied.

(1) - is (@ + 1)-finite.

(2) �PL (-) ⊗Q k ≃@ �, where � a @-finite cdga over k; or,

Then 18 (M@ (-)) < ∞, for all 8 ≤ @ + 1.

Proof. Recall from (8.1) that we have a @-quasi-isomorphismM@ (-) → �PL (-). In case
(1), the claim follows at once. In case (2), the discussion in Section 4.3 shows thatM@ (-)
is also a @-minimal model for �; thus, the claim follows from Proposition 4.7.

9. Algebraic models for groups

9.1. Malcev Lie algebras and 1-minimal models

Let � be a group, and letM1(�) be its 1-minimal model, as described in Section 6. By
definition, this is a minimal cdga overQ, generated in degree 1. If� = c1(-) is the funda-
mental group of a path-connected space - , then any classifying map -→  (�,1) induces
an isomorphism between the corresponding 1-minimal models,M1 (-) � M1(�). Con-
sequently, the existence of a 1-finite 1-model for a path-connected space - is equivalent
to the existence a 1-finite 1-model for its fundamental group, � = c1(-).
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Assume now that � is a finitely generated group. There is then a natural duality
between the Malcev Lie algebra m(�), endowed with the inverse limit filtration given
by (6.3) and the 1-minimal model M1(�), endowed with the increasing filtration from
(4.3). Recall that the latter filtration, {M(8)}8≥0, starts withM(0) = Q. Since � is finitely
generated, the vector space +1 ≔ �1(�,Q) is finite-dimensional. Each sub-cdgaM(8) is
then a Hirsch extension of the formM(8 − 1) ⊗ ∧

+8, where +8 = ker
(
�2(M(8 − 1)) →

�2 (M1(�))
)

is again finite-dimensional. Let L(�) = lim←−−8 L8 (�) be the pronilpotent Lie
algebra functorially associated to the 1-minimal modelM1 (�) in the manner described in
Section 4.5. We then have the following basic correspondence between the aforementioned
Lie algebras.

Theorem 9.1 ([137], [30], [66]). There is a natural isomorphism between the towers of

nilpotent Lie algebras {m(�/W8 (�))}8≥0 and {L8 (�)}8≥0, which gives rise to a functorial

isomorphism of complete, filtered Lie algebras, m(�) � L(�).

The functorial isomorphism m(�) � L(�), together with the dualization correspon-
denceM1 (�)! L(�) define adjoint functors between the category of Malcev Lie alge-
bras of finitely generated groups and the category of 1-minimal models of finitely gener-
ated groups. Using this isomorphism and the one from (6.6), we may identify gr= (�;Q)
with (+=)∨ for all = ≥ 1.

9.2. Groups with 1-finite 1-models

The next theorem provides an effective way of computing the Malcev Lie algebra of a
group �, under a certain finiteness assumption.

Theorem 9.2 ([113]). Let� be a finitely generated group that admits a 1-finite 1-model �.

Then the Malcev Lie algebra m(�) is isomorphic to the LCS completion of the holonomy

Lie algebra h(�).

Proof. By our hypothesis and by the uniqueness of 1-minimal models, we have an isomor-
phismM1(�) �M1 (�). By construction, the Lie algebra m(�) is filtered isomorphic to
the inverse limit of a tower of central extensions of finite-dimensional nilpotent Lie alge-
bras. By Theorem 9.1, the terms m(�/W8 (�)) of this tower are obtained by dualizing the
canonical filtration ofM1(�).

On the other hand, by Theorem 7.8, the cdgaM1 (�) is isomorphic to Ĉ (h(�)), the
completion of the Chevalley–Eilenberg cochain functor applied to h(�). Furthermore, it is
shown in [113, Corollary 5.7] that the dual of the canonical filtration of Ĉ(h(�)) is a tower
of central extensions of finite-dimensional Lie algebras, whose terms are the nilpotent
quotients h(�)/W8 (h(�)). Putting all these facts together yields the desired isomorphism,
m(�) � ĥ(�).

As an application, we have the following result, which gives a characterization of
groups � having a 1-finite 1-model in terms of their Malcev Lie algebras.
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Theorem 9.3 ([113]). A finitely generated group� admits a 1-finite 1-model if and only if

the Malcev Lie algebra m(�) is the lower central series completion of a finitely presented

Lie algebra over Q.

The above condition means that m(�) = !̂, for some finitely presented Lie algebra !
over Q, where !̂ = lim←−−= !/W= (!). By Theorem 9.2, if � is a 1-finite 1-model for �, we
may take ! to be the holonomy Lie algebra h(�).

Finally, here is a finiteness obstruction for finitely generated groups, which follows at
once from Theorem 8.12.

Corollary 9.4 ([113]). Let� be a finitely generated group. Assume that either� is finitely

presented or � admits a 1-finite 1-model. Then 12(M1 (�)) < ∞.

9.3. Filtered formal groups

Recall from Section 6.5 that a finitely generated group � is said to be filtered formal if its
Malcev Lie algebra m(�) is isomorphic to the degree completion of its associated graded
Lie algebra. The next result connects certain finiteness properties of algebraic objects
associated to such a group �.

Proposition 9.5 ([113]). Let � be a finitely generated, filtered formal group, so that

m(�) � !̂, where ! = L/� is a graded Lie algebra over Q generated in degree 1 and

� is an ideal included in L≥2. If 12(M1 (�)) < ∞, then dimQ(�/[L, �]) < ∞.

Here is another characterization of filtered-formality, this time in terms of minimal
models.

Theorem 9.6 ([132]). A finitely generated group � is filtered-formal over Q if and only

if the canonical 1-minimal modelM1(�) is filtered-isomorphic to a 1-minimal modelM
with positive Hirsch weights.

The notion of filtered formality over an arbitrary field k of characteristic 0 is defined
analogously. It follows from Theorem 5.5 that � is filtered-formal over k if and only it is
filtered-formal over Q. Another notable property of filtered formality is that it descends to
maximal solvable quotients. The next theorem develops a theme started in [104].

Theorem 9.7 ([132]). Let � be a finitely generated group. For each 8 ≥ 2, the quotient

map @8 : � ։ �/� (8) induces a natural epimorphism of graded k-Lie algebras,

Ψ(8) : gr(�; k)/gr(�; k) (8) gr(�/� (8) ; k). (9.1)

Moreover, if � is filtered-formal, then Ψ(8) is an isomorphism and the solvable quotient

�/� (8) is filtered-formal.

Taking� = �=, it follows that each solvable quotient �=/� (8)= is a filtered formal group,
with associated graded Lie algebra equal to L=/L(8)= , where L= = Lie(Q=) denotes the free
Q-Lie algebra on = generators.



Formality and finiteness in rational homotopy theory 41

9.4. Non-finiteness properties of certain metabelian groups

As an application of these techniques, we may construct a large class of metabelian groups
that do not have good finiteness properties, either at the level of presentation complexes,
or at the level of 1-models.

A finitely generated group � is said to be very large if it has a quotient a free group
�= of rank = greater or equal to 2. The group � is merely large if it has a finite-index
subgroup which is very large.

Theorem 9.8 ([113]). Let� be a metabelian group of the form� = c/c′′, where c is very

large. Then � is not finitely presentable and � does not admit a 1-finite 1-model.

Proof. By assumption, there is an epimorphism i : c ։ �=, for some = ≥ 2. Since the
group �= is free, the map i admits a splitting, and thus, the induced homomorphism on
maximal metabelian quotients, ī : c/c′′ ։ �=/� ′′= , also has a splitting. By the homotopy
functoriality of the 1-minimal model construction from Theorem 7.8, the map ī induces
a cdga map, ī∗ : M1(�=/� ′′= ) → M1(c/c′′), which is a split injection up to homotopy.

Suppose now that c/c′′ admits a finite presentation, or a 1-finite 1-model. It then fol-
lows from Corollary 9.4 that 12(M1 (c/c′′)) <∞. Since the map ī∗ is split injective (up to
homotopy), and since homology is a homotopy functor, we infer that 12(M1 (�=/� ′′= )) <
∞. Hence, since �=/� ′′= is filtered formal and L′′= ⊂ L≥2, Proposition 9.5 implies that the
Q-vector space L′′= /[L=,L′′= ] is finite-dimensional. On the other hand, a computation with
Hall–Reutenauer bases done in [113, Proposition 3.2] shows that dimQ(L′′= /[L=,L′′= ]) =∞.
This is a contradiction, and the proof is complete.

10. Formality of spaces, maps, and groups

10.1. Formal spaces

A space - is said to be formal (over a field k of characteristic 0) if Sullivan’s algebra
�PL (-) ⊗Q k is formal, that is, it is weakly equivalent to the cohomology algebra�∗ (-,k),
equipped with the zero differential,

�PL (-) ⊗Q k ≃ (�∗ (-, k), 0). (10.1)

If - is formal (over Q), its rationalization -Q depends only on �∗ (-,Q).
The formality property behaves well with respect to field extensions of the formQ ⊂ k.

Indeed, Halperin and Stasheff’s Corollary 3.8 implies that a connected space - with finite
Betti numbers is formal overQ if and only if - is formal over k. This result was first stated
and proved by Sullivan [137], using different techniques, while an independent proof was
given by Neisendorfer and Miller [101] in the simply-connected case.

Formality is preserved under several standard operations on spaces. For instance, if -
and . are formal, then so is the product - × . and the wedge - ∨ . ; moreover, a retract
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of a formal space is formal; see [52], [54] for details. In general, a finite cover of a formal
space need not be formal; nevertheless, Conjecture 8.11 holds in the formal case, and leads
to the following result.

Proposition 10.1 ([113]). Suppose Φ is a finite group acting simplicially on a formal

simplicial complex . with finite Betti numbers. Then the orbit space - = ./Φ is again

formal.

The following result of Kreck and Triantafillou [79] fits into Sullivan’s “determined
up to finite ambiguit” philosophy.

Theorem 10.2 ([79]). Let � be a finitely generated graded commutative ring over Z.

Then there are only finitely many homotopy types of simply connected, formal, finite �,-

complexes with integral cohomology isomorphic to �.

10.2. Formality criteria

For nilpotent spaces, Sullivan gave a formality criterion in terms of lifting automorphisms
of the cohomology algebra to the minimal model.

Theorem 10.3 ([137]). Let - be a nilpotent CW-complex with finite Betti numbers. Then

- is formal if and only if every automorphism of �∗(-,Q) can be realized by an auto-

morphism ofM(-).

Roughly speaking, the more highly connected a space is, the more likely it is to be
formal. This was made precise by Stasheff in [124], as follows.

Theorem 10.4 ([124]). Let - be a :-connected CW-complex of dimension =; if = ≤ 3: + 1,

then - is formal.

This is the best possible bound: attaching a cell 43:+2 to the wedge (:+1 ∨ (:+1 via the
iterated Whitehead product []1, []1, ]2]] yields a non-formal CW-complex.

A powerful formality criterion was given by Sullivan in [137].

Theorem 10.5 ([137]). If �∗ (-,k) is the quotient of a free cga by an ideal generated by a

regular sequence, then - is a formal space. Consequently, if �∗ (", k) is a free cga, then

- is formal.

This result provides a large supply of formal spaces, such as: rational cohomology
spheres and tori; compact connected Lie groups�, as well as their classifying spaces, ��;
homogeneous spaces of the form �/ , with rank� = rank ; and Eilenberg–MacLane
classifying spaces  (�, =) for discrete groups�, provided = ≥ 2. In particular, if - is the
complement of a knotted sphere in (=, = ≥ 3, then - is a formal space.

On the other hand, not all homogeneous spaces are formal. For instance, the quotient
spaces SU(?@)/(SU(?) × SU(@)) for ?, @ ≥ 3; SO(=2 − 1)/SU(=) for = ≥ 3; Sp(5)/SU(5);
and SO(78)/�6 are known to be non-formal. Furthermore, (�,1) spaces need not be for-
mal. For instance, Hasegawa [69] showed that a classifying space for a torsion-free, finitely
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generated nilpotent group� is formal if and only if � is abelian. We refer to [54] for more
on these topics.

A connected space - is said to be intrinsically formal if any connected space whose
rational cohomology algebra is isomorphic to �∗(-,Q) has the same rational homotopy
type as - ; in other words, if there is a unique rational homotopy type whose rational
cohomology algebra is isomorphic to that of - .

Theorem 10.6 ([10], [68]). Let - be a connected space whose minimal modelM(-) is

of finite type. If 12: (-) = 0 for all : ≥ 1, then - is intrinsically formal and has the rational

homotopy type of a wedge of odd spheres.

Although the spaces in the above theorem are intrinsically formal, they are typically
not hyperformal. For instance, the space - = (2:1−1 ∨ (2:2−1 fits into this framework, but
the cohomology algebra �∗ (-, k) is isomorphic to

∧(G1, G2)/(G1G2), with |G8 | = 2:8 − 1,
which is not hyperformal if :1 ≠ :2, since in that case {G1G2} is not a regular sequence.

10.3. Formality properties of closed manifolds

As shown by Miller [99], the dimension bound from Theorem 10.4 can be relaxed for
closed manifolds, by using Poincaré duality.

Theorem 10.7 ([99]). Let " be a closed, :-connected manifold (: ≥ 1) of dimension

= ≤ 4: + 2. Then " is formal.

In particular, all simply-connected closed manifolds of dimension at most 6 are formal.
Again, this is best possible: as shown by Fernández and Muñoz in [58], there exist closed,
simply-connected, non-formal manifolds in each dimension = ≥ 7. On the other hand, if "
is a closed, orientable, :-connected =-manifold with 1:+1 (") = 1, then the bound insuring
formality can be improved to = ≤ 4: + 4, see Cavalcanti [29].

Formality also behaves well with respect to standard operations on manifolds. For
instance, Stasheff [124] proved the following: If " is a closed, simply-connected manifold
such that the punctured manifold " \ {∗} is formal, then " is formal. Moreover, if " and
# are closed, orientable, formal manifolds, so is their connected sum, "##; see [52].

It has been shown by Cavalcanti [29], and, in stronger form, by Crowley and Nordström
in [35], that a certain type of Hard Lefschetz property insures the intrinsic formality of
highly connected manifolds.

Theorem 10.8 ([35]). Let " be an (= − 1)-connected manifold of dimension 4= − 1. Sup-

pose 1= (") ≤ 3 and there is a cohomology class D ∈ �2=−1 (", Q) such that the map

�= (",Q) → �3=−1 (",Q), { ↦→ D{ is an isomorphism. Then " is intrinsically formal.

In the same paper, Crowley and Nordström construct infinitely many simply-con-
nected, non-formal manifolds all of whose Massey products vanish (the smallest dimen-
sion of such a manifold is 7). We summarize their results, as follows.



44 A. I. Suciu

Theorem 10.9 ([35]). For each : ≥ 1, there is a non-formal, (2: − 1)-connected manifold

of dimension 8: − 1 and a (2:)-connected manifold of dimension 8: + 3 such that all

Massey products in the rational cohomology rings of these manifolds vanish.

In [37], Deligne, Griffiths, Morgan, and Sullivan showed that every compact Kähler
manifold " is formal. On the other hand, symplectic manifolds need not be formal: the
simplest example is the Kodaira–Thurston manifold, which is the product of the circle with
the 3-dimensional Heisenberg nilmanifold (see Example 10.14 below). This led Lupton
and Oprea [89] to raise the question whether compact, simply-connected symplectic mani-
folds are formal. The question was answered in the negative by Babenko and Taimanov [5],
[6], who used McDuff’s symplectic blow-ups to construct non-formal, simply-connected
symplectic manifolds in all even dimensions greater than 8; an 8-dimensional example was
subsequently constructed by Fernández and Muñoz [60]. We refer to [57], [143], [121],
[82], and [54] for more on this subject.

10.4. Formal maps

A continuous map 5 : - → . is said to be formal (over Q) if the induced morphism
between Sullivan models, �PL( 5 ) : �PL (. ) → �PL (-), is formal, in the sense of Definition
3.10. By the discussion from Section 4.4, this condition is equivalent to the existence of a
diagram of the form

�PL(. ) M(. ) (�∗ (.,Q), 0)

�PL(-) M(-) (�∗ (-,Q), 0),

�PL ( 5 )

d.

M( 5 )

k.

5 ∗

d- k-

(10.2)

which commutes up to homotopy and in which the horizontal arrows are quasi-isomor-
phisms. When 5 is formal, the surjectivity of 5 ∗ implies that ofM( 5 ).

One may define in a similar fashion formality of maps over an arbitrary field k of
characteristic 0. As shown by Vigué-Poirrier in [146], a map 5 : - → . between two
nilpotent CW-complexes of finite type is formal over k if and only if it is formal over Q.
Moreover, as shown by Félix and Tanré [55], the cofiber of such a map is a formal space.

Example 10.10. Suppose 5 : "→ # is a holomorphic map between two compact Kähler
manifolds. Then, as shown in [37], 5 is a formal map over R.

In general, though, a map between two formal spaces need not be formal. A simple
example is provided by the Hopf map 5 : (3→ (2, for which 5 ∗ : �̃∗ ((2,Q) → �̃∗((3,Q)
is the zero map, yet the induced morphismM( 5 ) :M((2) → M((3) is non-trivial.

The next result, due to Arkowitz [4], delineates a class of formal spaces - and . for
which every map 5 : - → . is formal.

Theorem 10.11 ([4]). Let - and . be simply connected, formal, rational spaces, and let

[-,. ]f be the set of homotopy classes of formal maps from - to . .
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(1) The map [-,. ]f → Hom(�∗(.,Q), �∗(-,Q)), 5 ↦→ 5 ∗ is a bĳection.

(2) Further assume that - and . are of finite type, 18 (-) = 0 for 8 ≥ 2= + 1, and . is

=-connected. Then every map 5 : - → . is formal.

10.5. Partial formality

Let @ be a non-negative integer. A space - is said to be @-formal (over a field k of char-
acteristic 0) if its Sullivan algebra is @-formal, that is, (�PL (-) ⊗Q k, 3) ≃@ (�∗(-, k),0).
Clearly, if - is formal, then - is @-formal for all @ ≥ 0. Under some additional hypothesis,
this implication may be reversed.

Theorem 10.12 ([91]). Let - be a space such that �8 (-, k) = 0 for all 8 ≥ @ + 2. Then -

is @-formal if and only if - is formal.

In particular, the notions of formality and @-formality coincide for (@ + 1)-dimensional
CW-complexes.

Example 10.13. Let + be a complex algebraic hypersurface in CP=, with complement
- = CP= \ + . Work of Morgan [100] shows that - is 1-formal, though not formal, in
general. By Morse theory, - has the homotopy type of a finite CW-complex of dimension
=. Thus, if = = 2 (that is, + is a plane curve), Theorem 10.12 implies that - is formal.

Example 10.14. Let " = �R/�Z be the 3-dimensional Heisenberg nilmanifold, where
�R is the group of real, unipotent 3 × 3 matrices, and �Z = c1(") is the subgroup
of integral matrices in �R. This manifold has as a model the cdga (�, 3), where � =∧(01, 02, 1) with generators in degree 1, and differential given by 308 = 0 and 31 = 0102.
As noted in Example 3.6, this cdga is not 1-formal. Alternatively, the triple Massey prod-
uct 〈[01], [01], [02]〉 = {[011]} is non-vanishing, with trivial indeterminacy. Therefore,
" is not 1-formal.

Partial formality enjoys a descent property analogous to that for full formality. Indeed,
Theorem 3.9 has the following immediate corollary.

Corollary 10.15 ([132]). Let - be a connected space such that 18 (-) < ∞ for 8 ≤ @ + 1.

Then - is @-formal over Q if and only if - is @-formal over k.

We may also consider a partial formality notion for maps. A continuous map 5 : -→.

is said to be @-formal if the morphism �PL ( 5 ) : �PL (. ) → �PL (-) is @-equivalent to the
induced homomorphism in cohomology, 5 ∗ : �∗ (.,Q) → �∗(-,Q).

10.6. Koszul algebras and formality

Let � be a connected, locally finite k-cga. The trivial �-module k has a free, graded
�-resolution of the form

· · · �=2 �=1 � k 0.
i3 i2 i1

(10.3)
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Such a resolution is minimal if all the nonzero entries of the matrices i8 have positive
degrees. The algebra � is said to be a Koszul algebra if the minimal �-resolution of k
is linear, or, equivalently, Tor�8 (k, k) 9 = 0 for all 8 ≠ 9 . A necessary condition is that �
be expressed as the quotient � = �/� of an exterior algebra on generators in degree 1 by
an ideal � generated in degree 2. A sufficient condition is that the ideal � has a quadratic
Gröbner basis. If � is a Koszul algebra, then the quadratic dual �! is also a Koszul algebra
and the following “Koszul duality” formula holds:

Hilb(�, C) · Hilb(�!,−C) = 1. (10.4)

The following theorem of Papadima and Yuzvinsky [115] relates certain properties of
the minimal model of a space - to the Koszulness of its cohomology algebra.

Theorem 10.16 ([115]). Let - be a connected space with finite Betti numbers.

(1) IfM(-) �M1(-), then the cohomology algebra �∗(-,Q) is a Koszul algebra.

(2) If - is formal and �∗(-,Q) is a Koszul algebra, thenM(-) �M1(-).

Consequently, if - is formal, then - is rationally aspherical if and only if �∗(-,Q) is a
Koszul algebra. When - is also a nilpotent space, Berglund [15] recovers this equivalence
(without assuming the cohomology algebra is generated in degree 1) and finds several
alternative conditions yielding the same class of spaces, which he calls Koszul spaces.

As an application of Theorem 10.16, we have the following formality criterion.

Corollary 10.17 ([105]). Let - be a connected, finite-type CW-complex, and suppose that

�∗ (-,Q) is a Koszul algebra. Then - is 1-formal if and only if - is formal.

Example 10.18. LetA be an arrangement of linear hyperplanes in C=, with complement
- =C= \⋃� ∈A �. Work of Arnol’d and Brieskorn from the 1960s shows that - is formal.
Now suppose A is a fiber-type arrangement, or, equivalently, if its intersection lattice,
!(A), is supersolvable. Then - is aspherical and �∗(-,Q) is a Koszul algebra. Theorem
10.16 implies that - is also rationally aspherical (this is a result first proved by Falk [48]
by other methods). It is an open question whether the converse is true: If - is rationally
aspherical, isA necessarily of fiber-type? Put differently: If �∗ (-,Q) is a Koszul algebra,
is !(A) necessarily supersolvable?

10.7. The 1-formality property for groups

A finitely generated group � is said to be 1-formal (over a field k of characteristic 0) if
there is a classifying space  (�, 1) which is 1-formal (over k). In view of the discussion
from Section 8.3, we see that a connected CW-complex - is 1-formal if and only if its
fundamental group, � = c1(-), is 1-formal.

Over Q, the 1-formality property of a group � depends only on its Malcev Lie alge-
bra, m(�), or its rationalization, �Q. This is a consequence of the following well-known
theorem, proved for instance in [27], [94], [132].
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Theorem 10.19. A finitely generated group � is 1-formal if and only if m(�) is isomor-

phic to the degree completion of a finitely generated, quadratic Lie algebra.

Let h(�) = h(�;Q) be the holonomy Lie algebra of �, as described in Section 7.5.
As shown in [104], the 1-formality of � is equivalent to m(�) � ĥ(�).

Example 10.20. Let �= be the free group of rank = ≥ 1. We then have �1 (�=,Q) = Q=
and �2(�=,Q) = 0; hence, `� = 0 and so h(�=) = Lie(Q=), the free Lie algebra of rank
=. On the other hand, m(�=) = L̂ie(Q=), by Theorem 6.4. Therefore, �= is 1-formal.

Example 10.21. Let Σ6 be the Riemann surface of genus 6 ≥ 1. The group � = c1(Σ6)
is generated by G1, H1, . . . , G6, H6, subject to the single relation [G1, H1] · · · [G6 , H6] = 1. It
is readily checked that h(�, k) is the quotient of the free Lie algebra on G1, H1, . . . , G6, H6

by the ideal generated by [G1, H1] + · · · + [G6, H6]. A further computation using Theorem
6.4 shows that m(�) � ĥ(�); thus, � is 1-formal.

The 1-formality property is preserved under finite free products and direct products of
finitely generated groups. The following lemma (which follows at once from the discussion
in Section 8.3) provides a useful 1-formality criterion.

Lemma 10.22. Let� a finitely generated group. Suppose there is a 1-formal group  and

a homomorphism i : �→  such that i∗ : �1( ,Q) → �1(�,Q) is an isomorphism and

i∗ : �1 ( ,Q) → �1(�,Q) is injective. Then � is also 1-formal.

Example 10.23. If � is a finitely generated group with 11(�) equal to 0 or 1, then � is
1-formal. Indeed, the claim is true for  0 = {1} (trivially) and for  1 = Z (by Example
10.20). Moreover, if 11(�) = 8 ∈ {0, 1}, we may define a homomorphism i : � →  8

satisfying the assumptions of Lemma 10.22. Therefore, the claim holds for �, too.

Here is another interpretation of the 1-formality notion. We say that a finitely gener-
ated group � is graded-formal (over k) if the associated graded Lie algebra gr(�; k) is
quadratic. It follows from Theorem 7.9 that � is graded-formal precisely when the canon-
ical surjection Φ : gr(�; k) ։ h(�; k) is an isomorphism. As in Section 6.5, we say that
� is filtered-formal over k if m(�) ⊗ k � ĝr(�; k). Putting things together, we obtain the
following result.

Proposition 10.24 ([132]). A finitely generated group � is 1-formal (over k) if and only

if � is graded-formal and filtered-formal (over k).

As a corollary, we deduce that 1-formality enjoys a descent property.

Corollary 10.25 ([132]). A finitely generated group � is 1-formal over k if and only if �

is 1-formal over Q.

Indeed, it is easily seen that graded-formality is independent of the choice of a field k of
characteristic 0. By Theorem 5.5, the same is true for filtered-formality, and the conclusion
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follows from Proposition 10.24. When � is finitely presented, we have that 12(�) < ∞,
and the result also follows from Corollary 10.15.

As we saw in Example 10.20, the free group �= has vanishing cup-product map `�=
and is 1-formal. Here is a partial converse.

Proposition 10.26 ([42]). Let� be a group admitting a finite presentation with only com-

mutator relators. If � is 1-formal and `� = 0, then � is a free group.

Example 10.27. Let � = �Z be the Heisenberg group from Example 10.14. Then � is
isomorphic to �2/W3 (�2), and so it has a finite presentation with only commutator relators;
moreover, `� = 0, yet � is not a free group, since it is 2-step nilpotent. Therefore, we
conclude once again that � is not 1-formal.

10.8. Polyhedral products and right-angled Artin groups

We conclude this section with a discussion of the formality properties of polyhedral prod-
uct spaces and some related groups. Given a finite simplicial complex  , it is a subtle
question to decide whether the polyhedral productsZ (-, - ′) from Section 8.6 are for-
mal, even when all the spaces -8 and the subspaces - ′8 are formal. Theorem 8.9 (together
with a previous remark) yields a sufficient condition for this to happen.

Corollary 10.28 ([56]). Let -8, -
′
8 be nilpotent, finite-type CW-complexes. Assume that

the inclusion maps - ′8 ↩→ -8 are formal and induce epimorphisms in cohomology. Then

all polyhedral productsZ (-, - ′) are formal.

We specialize now to the case when -8 = - and - ′8 = -
′ for all 8, and writeZ (-, - ′)

for the corresponding polyhedral product. If - is nilpotent and formal, then the inclusion
∗ → - satisfies the hypothesis of Corollary 10.28, and thusZ (-, ∗) is formal—a result
first proved in [102]. In particular, the Davis–Januszkiewicz spaces �� = Z (CP∞, ∗)
and the toric complexes ) = Z ((1, ∗) are all formal.

Letting Γ be the 1-skeleton of  , it is readily seen that the fundamental group of ) 
is the right-angled Artin group �Γ associated to the graph Γ. Consequently, all right-
angled Artin groups are 1-formal—a result also proved in [105], using Theorems 6.4 and
10.19. Moreover, if the flag complex of Γ is simply-connected, then, as shown in [106],
the Bestvina–Brady group associated to Γ is also 1-formal.

Finally, let us consider the moment-angle complexes Z = Z (�2, (1). In this sit-
uation, Corollary 10.28 no longer applies, since the inclusion-induced homomorphism
�1 (�2,Q) → �1((1,Q) is not surjective. In fact, there are infinite families of simplicial
complexes  for which �∗ (Z ,Q) has non-vanishing Massey products, and thus Z is
non-formal, see [9], [38], [64]. If  is an =-vertex triangulation of (<, thenZ is a closed
manifold of dimension = + < + 1. Asymptotically, almost all triangulations  of (2 yield
non-formal moment-angle manifoldsZ , see [38].
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11. Alexander invariants and resonance varieties

11.1. A generalized Koszul complex

Given a finite-dimensional k-vector space + , we define the corresponding canonical ele-

ment to be tensor l+ ∈ +∨ ⊗ + which corresponds to the identity automorphism of +∨

under the tensor-hom adjunction (recall that ⊗ = ⊗k). In concrete terms, if we pick a basis
{41, . . . , 4=} for +∨ and let {G1, . . . , G=} be the dual basis for + , then l+ =

∑=
9=1 4 9 ⊗ G 9 .

Now let � = (�∗, 3) be a connected k-cdga, and assume that the k-vector space
�1 (�) is finite-dimensional. Since 3 (1) = 0 and �0 = k, the differential 3 : �0 → �1

vanishes; thus, we may identify �1(�) with /1 (�). Setting �1(�) = (�1(�))∨, we let
l� ≔ l�1 (�) ∈ �1(�) ⊗ �1 (�) be the corresponding canonical element.

Let ( = Sym(�1(�)) be the symmetric algebra on �1(�). The tensor product � ⊗k ( is
both a free (-module and a bigraded k-algebra, with product (0 ⊗ B) (0′ ⊗ B′) = 00′ ⊗ BB′.
It is also a k-cdga, with differential 3 ⊗ id(. Left-multiplication by l�, viewed as an
element of /1 (�) ⊗ �1(�), defines an endomorphism of � ⊗ ( of bidegree (1, 1). We
define an (-linear map, X� : � ⊗k (→ � ⊗ (, by

X� = l� + 3 ⊗ id( . (11.1)

It is readily verified that X2
�
= 0, and so the next result follows.

Proposition 11.1 ([130]). Let (�∗, 3) be a connected k-cdga with dimk�1(�) <∞. There

is then a cochain complex of free (-modules,

· · · �8 ⊗ ( �8+1 ⊗ ( �8+2 ⊗ ( · · · ,
X8
�

X8+1
� (11.2)

with differentials given by (11.1), such that (�∗ ⊗ (, X�) is again a k-cdga.

If we fix a k-basis {41, . . . , 4=} for �1 (�) and let {G1, . . . , G=} be the dual basis for
�1 (�), the ring ( = Sym(�1(�)) may be identified with the polynomial ring k[G1, . . . , G=],
viewed as the coordinate ring of the affine space �1(�). The differentials in (11.1) are then
the (-linear maps given by

X8�(0 ⊗ B) =
=∑

9=1

4 90 ⊗ BG 9 + 3 (0) ⊗ B (11.3)

for all 0 ∈ �8 and B ∈ (. If the cdga � has zero differential, each map X8
�

is given by a
matrix whose entries are linear forms in the variables G1, . . . , G=; in general, though, the
entries of X8

�
may also have non-zero constant terms.

11.2. The Alexander invariants of a cdga

The (-dual of the cochain complex (11.2) is the chain complex of free (-modules,

(�∗ ⊗ (, X�) : · · · �2 ⊗ ( �1 ⊗ ( �0 ⊗ ( = (,
X�2 X�1 (11.4)
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where the maps X�8 are the (-linear duals of the maps X8
�
. By analogy with classical the

topological setting, we define the Alexander invariants of a cdga (�∗, 3) as the homology
(-modules of this chain complex,

B8 (�) ≔ �8 (�∗ ⊗ (). (11.5)

If 3 = 0, then the differentials in (11.4) are homogeneous (of degree 1), and so the
(-modulesB8 (�) inherit a natural grading. For instance, if � =

∧
+ is the exterior algebra

on a finite-dimensional k-vector space + , with differential 3 = 0, then B8 (�) = 0 for all
8 ≥ 1. In general, though, the Alexander invariants B8 (�) do not have a natural grading.

An explicit finite presentation for the first Alexander invariant, B(�) ≔ B1(�), was
given in [104, Theorem 6.2] in the the case when 3 = 0. This presentation is generalized
in [130], as follows.

Let (�, 3) be a connected k-cdga with �1 finite-dimensional. Set � =
∧
�1(�) and

identify �1 = �1(�) with /1 = ker
(
3 : �1 → �2

)
. Let*1 be its complementary k-vector

subspace, so that �1 = �1 ⊕ *1, and write �8 = (�8)∨ and so forth for the k-dual vec-
tor spaces. Then *1 may be identified with the image of the k-dual of the differential,
3∨ : �2→ �1, and we have a direct sum decomposition, �1 = �1 ⊕*1. Let c* : �1→*1

be the projection onto the second summand.

Theorem 11.2 ([130]). The Alexander invariant of �, viewed as a module over the sym-

metric algebra ( = Sym(�1), has presentation

(
�3 ⊕ �2

)
⊗ (

(
�2 ⊕ *1

)
⊗ ( B(�) 0,

(
X�3 0

`∨
�
⊗id( 3∨�⊗id( +V∨�

)

(11.6)

where V∨� = (c* ⊗ id() ◦ (l� − `� ◦ l� )∨.

Finally, let � be the maximal ideal at 0 of the polynomial ring (. The powers of this
ideal define a descending filtration, {�=B(�)}=≥0, on the Alexander invariant of �. Let
gr(B(�)) be the associated graded (-module with respect to this filtration.

Proposition 11.3 ([130]). For each : ≥ 1, there is an isomorphism of k-vector spaces,

gr: (B(�))∨ � TorE:−1(�, k): ,

where on the right side � is viewed as a graded module over the exterior algebra E =∧
�1.

11.3. Resonance varieties

Let (�, 3) be a connected cdga. As noted previously, �1(�) = /1 (�). For every l ∈
�1 (�), the operator 3l := 3 + l · is a differential on �. The resonance varieties R8

:
(�)

are defined, for all 8, : ≥ 0, as the infinitesimal jump loci

R8: (�) = {l ∈ �
1 (�) | dim�8 (�, 3l) ≥ :}. (11.7)
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When the cdga � is @-finite, for some @ ≥ 1, these sets are Zariski closed subsets of the
affine space �1(�), for all 8 ≤ @ and : ≥ 0.

Clearly, �8 (�, X0) = �8 (�); thus, the point 0 ∈ �1(�) belongs to the variety R81(�)
if and only if �8 (�) ≠ 0. Moreover, R0

1 (�) = {0}. When the differential of � is zero, the
resonance varieties R8

:
(�) are homogeneous subsets of �1(�) = �1. In general, though,

the resonance varieties of a cdga are not homogeneous, as we shall see in Example 11.6.
The following lemma follows quickly from the definitions.

Lemma 11.4 ([92]). Let i : � → �′ be a cdga morphism, and assume i is an iso-

morphism up to degree @, and a monomorphism in degree @ + 1, for some @ ≥ 0. Then

the induced isomorphism in cohomology, i∗ : �1(�′) → �1(�), identifies R8
:
(�) with

R8
:
(�′) for each 8 ≤ @, and sends R@+1

:
(�) into R@+1

:
(�′), for all : ≥ 0.

Consequently, if � and �′ are isomorphic cdgas, then their resonance varieties are
ambiently isomorphic. As we shall see (also in Example 11.6), the conclusions of Lemma
11.4 do not always hold if we only assume that i : �→ �′ is a @-quasi-isomorphism.

An alternative interpretation of the degree 1 resonance varieties is given by the follow-
ing theorem.

Theorem 11.5 ([130]). Let � be a connected cdga with 0 < dim �1 < ∞. Then, for all

: ≥ 1,

R1
: (�) = V

(
Ann

(∧: (B(�)
) ) )
, (11.8)

at least away from 0 ∈ �1 (�).

The next example (adapted from [92] and [126]) illustrates several of the points men-
tioned above.

Example 11.6. Let � be the exterior algebra over C on generators 0, 1 in degree 1,
equipped with the differential given by 30 = 0 and 31 = 1 · 0. Then �1(�) = C, generated
by 0. Setting ( = C[G], the chain complex (11.4) takes the form

( (2 (.
X2=

(
0
G−1

)
X1=( G 0 )

(11.9)

It is readily seen that the Alexander invariantB(�) = �1(�∗ ⊗ () is isomorphic to (/(G −
1). Its support is equal to {1}, yet the resonance variety R1

1 (�) is equal to {0, 1}; both
are non-homogeneous subvarieties of C. Finally, let �′ be the sub-cdga generated by 0.
Clearly, the inclusion map, ] : �′ ↩→ �, induces an isomorphism in cohomology. Never-
theless, R1

1 (�′) = {0}, and so the resonance varieties of � and �′ differ, although � and
�′ are quasi-isomorphic.

11.4. Resonance of tensor products and Hirsch extensions

The resonance varieties behave well with respect to some natural operations on cdgas.
The next result details the behavior of the depth-1 resonance varieties with respect to
tensor products.
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Proposition 11.7 ([109], [112]). Let (�, 3) and (�′, 3 ′) be two connected, finite-type

cdgas. Then, for all @ ≥ 0,

R81(� ⊗ �
′) =

⋃

?+@=8
R ?1 (�) × R

@
1 (�

′). (11.10)

A proof of this statement is given in [109, Proposition 13.1] under the assumption that
both differentials, 3 and 3 ′, vanish (see also [112, Proposition 2]). The same approach
works in this wider generality.

We conclude this section with a result that shows how the resonance varieties behave
under a certain type of Hirsch extensions.

Proposition 11.8 ([114]). Let � be a connected, finite-type cdga. Fix an element 4 ∈ �2

with 34 = 0, and let � = (� ⊗4
∧(C), 3) be the corresponding Hirsch extension.

(1) If [4] = 0, then R81(�) = R
8−1
1 (�) ∪ R

8
1 (�), for all 8.

(2) If [4] ≠ 0, then

(a) R8: (�) ⊆ R
8−1
1 (�) ∪ R

8
: (�), for all 8 and :.

(b) R1
:
(�) = R1

:
(�), for all :.

12. Cohomology jump loci and finiteness properties

12.1. Characteristic varieties

Given a space - , the jump loci for cohomology with coefficients in rank 1 complex local
systems on - are powerful homotopy-type invariants, defined as follows.

We will assume that - is path-connected and its fundamental group, � = c1(-), is
finitely generated. Let T� ≔ Hom(�, C∗) be the group of C-valued multiplicative char-
acters on �. This is an abelian, complex algebraic group, whose identity 1 corresponds
to the trivial representation. The group T� may be identified with the cohomology group
Char(-) ≔ �1(-,C∗). Its identity component, T0

�
, is isomorphic to the complex alge-

braic torus (C∗)11 (-) ; the other connected components of T� are copies of this torus,
indexed by the torsion subgroup of the finitely generated abelian group �ab = �1 (-,Z).

The characteristic varieties of - in degree 8 ≥ 0 and depth : ≥ 0 are the sets

V8
: (-) = {d ∈ Char(-) | dim�8 (-,Cd) ≥ :}, (12.1)

where Cd is the rank 1 local system on - associated to a representation d : � → C∗. In
other words, Cd is the vector space C viewed as a module over the group algebra C[�] via
the action 6 · 0 = d(6)0, for 6 ∈ � and 0 ∈ C.

When the space - is @-finite, for some @ ≥ 1, the setsV 8
:
(-) are Zariski closed subsets

of the character group, for all 8 ≤ @ and : ≥ 0, see [111]. It is readily seen that the the sets
V1
:
(-) depend only on the group � = c1(-).
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Now let � be a finitely generated group, and setV 8
:
(�) := V 8

:
( (�, 1)). It is known

that the sets V1
: (�) with : ≥ 0 depend only on the maximal metabelian quotient �/� ′′

(see e.g. [41]); more precisely,V1
: (�) = V1

: (�/� ′′).
The characteristic varieties have several useful naturality properties. For instance, sup-

pose i : � ։ & is an epimorphism. Then the induced morphism on character groups,
i∗ : T&→ T� , is injective and sendsV1

: (&) intoV1
: (�) for all : ≥ 0. Likewise, suppose

that � < � is a finite-index subgroup. Then the inclusion U : �→ � induces a morphism
U∗ : T� → T� with finite kernel, which sendsV 8

:
(�) toV 8

:
(�) for all 8, : ≥ 0.

For the free groups �= of rank = ≥ 2, we have thatV1
:
(�=) = (C∗)= for : ≤ = − 1 and

V1
= (�=) = {1}. In general, though, the jump loci of a group can be arbitrarily complicated.

Example 12.1. Let 5 ∈ Z[C±1
1 , . . . , C±1

= ] be an integral Laurent polynomial with 5 (1) = 0.
Then, as shown in [134], there is a finitely presented group � with �ab = Z= such that
V1

1 (�) coincides with the variety V( 5 ) := {C ∈ (C∗)= | 5 (C) = 0}.

12.2. Algebraic models and cohomology jump loci

Work of Dimca and Papadima [40], generalizing previous work of Dimca, Papadima, and
Suciu [42], establishes a tight connection between the geometry of the characteristic vari-
eties of a space and that of resonance varieties of a model for it, around the origins of the
respective ambient spaces, provided certain finiteness conditions hold.

Let - be a path-connected space with 11(-) < ∞, and consider the analytic map
exp: �1 (-,C) → �1(-,C∗) induced by the coefficient homomorphismC→ C∗, I ↦→ 4I .
Let (�, 3) be a cdga model for - , defined over C. Upon identifying �1 (�) � �1(-,C),
we obtain an analytic map �1(�) → �1 (-,C∗), which takes 0 to 1.

Theorem 12.2 ([40]). Let - be a @-finite space, and suppose - admits a @-finite, @-model

�, for some @ ≥ 1. Then, the aforementioned map, �1(�) → �1 (-,C∗), induces a local

analytic isomorphism, �1(�) (0) → �1(-,C∗) (1) , which identifies the germ at 0 of R8
:
(�)

with the germ at 1 ofV8
:
(-), for all 8 ≤ @ and all : ≥ 0.

The work of Budur and Wang [25] builds on this theorem, providing a structural result
on the geometry of the characteristic varieties of spaces satisfying the hypothesis of the
above theorem. Putting together Theorem 12.2 and Corollary 12.9 yields their result, in
the slightly stronger form given in [113].

Theorem 12.3 ([25]). Suppose - is a @-finite space which admits a @-finite @-model.

Then all the irreducible components ofV 8
: (-) passing through 1 are algebraic subtori of

Char(-), for all 8 ≤ @ and : ≥ 0.

12.3. Finiteness obstructions

The above theorem may be used to give examples of finite CW-complexes which do not
have 1-finite 1-models.
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Example 12.4. Let 5 be an integral Laurent polynomial in = ≥ 2 variables, and assume
its zero set in (C∗)= contains the origin 1, is irreducible but is not an algebraic subtorus;
for instance, take 5 (C) =∑=

8=1 C8 − =. Letting� be a finitely presented group withV1
1 (�) =

V( 5 ) as in Example 12.1, we deduce from Theorem 12.3 that the finite presentation com-
plex of � admits no 1-finite 1-model.

On the other hand, as the next example shows, the existence of a 1-finite 1-model for a
finitely generated group does not necessarily imply that the group is finitely presented.

Example 12.5. Let . be a finite, connected CW-complex which is non-simply connected
yet has 11(. ) = 0, and let� be the Bestvina–Brady group associated to a flag triangulation
of . . It is proved in [107, §10] that � is finitely generated and 1-formal, but not finitely
presented.

As the next family of examples illustrates, the infinitesimal finiteness obstruction from
Theorem 8.12 may be stronger than the one from Theorem 12.3, even when @ = 1.

Example 12.6. Consider the free metabelian group� = �=/� ′′= with = ≥ 2. The free group
�= = c1(

∨= (1) admits a formal, finite CW-complex as classifying space; thus, Theorem
12.3 applies to �=. It follows that the characteristic varieties V8

:
(�) � V 8

:
(�=) satisfy

the conditions from Theorem 12.3 for 8 ≤ 1 and : ≥ 0. On the other hand, as we saw in
the proof of Theorem 9.8, we have that 12(M1 (�)) = ∞, and so the group � admits no
1-finite 1-model.

12.4. Tangent cones

Before proceeding, we review two constructions that provide approximations to a subva-
riety , of a complex algebraic torus (C∗)=. The first one is the classical tangent cone,
while the second one is the exponential tangent cone, a construction introduced in [42]
and further studied in [125], [40], and [134].

Let � be an ideal in the Laurent polynomial ring C[C±1
1 , . . . , C±1

= ] such that , = + (�).
Picking a finite generating set for � , and multiplying these generators with suitable mono-
mials if necessary, we see that, may also be defined by the ideal � ∩ ' in the polynomial
ring ' = C[C1, . . . , C=]. Let � be the ideal in the polynomial ring ( = C[G1, . . . , G=] gener-
ated by the polynomials 6(G1, . . . , G=) = 5 (G1 + 1, . . . , G= + 1), for all 5 ∈ � ∩ '.

The tangent cone of , at 1 ∈ (C∗)= is the algebraic subset TC1(,) ⊆ C= defined by
the ideal in(�) ⊂ ( generated by the initial forms of all non-zero elements from �. The set
TC1(,) is a homogeneous subvariety of C=, which depends only on the analytic germ of
, at the identity. In particular, TC1(,) ≠ ∅ if and only if 1 ∈ , .

Let exp: C= → (C∗)= be the exponential map, given in coordinates by G8 ↦→ 4G8 . The
exponential tangent cone at 1 to a subvariety, ⊆ (C∗)= is the set

g1 (,) = {G ∈ C= | exp(_G) ∈ ,, for all _ ∈ C}. (12.2)
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It is readily seen that g1 commutes with finite unions and arbitrary intersections. Further-
more, g1 (,) only depends on ,(1) , the analytic germ of , at the identity; in particular,
g1 (,) ≠ ∅ if and only if 1 ∈ , . The main property of this construction is encapsulated in
the following lemma.

Lemma 12.7 ([42], [125], [134]). The exponential tangent cone g1 (,) of a subvariety

, ⊆ (C∗)= is a finite union of rationally defined linear subspaces of the affine space C=.

For instance, if , is an algebraic subtorus of (C∗)=, then g1 (,) equals TC1 (,), and
both coincide with )1 (,), the tangent space to , at the identity 1. More generally, there
is always an inclusion between the two types of tangent cones associated to an algebraic
subset, ⊆ (C∗)=, namely,

g1 (,) ⊆ TC1 (,). (12.3)

As we shall see, though, this inclusion is far from being an equality for arbitrary , .
For instance, the tangent cone TC1(,) may be a non-linear, irreducible subvariety of C=,
or TC1 (,) may be a linear space containing the exponential tangent cone g1 (,) as a
union of proper linear subspaces.

12.5. The Exponential Ax–Lindemann theorem

In [25], Budur and Wang establish the following version of a classical result, due to Ax
and Lindemann.

Theorem 12.8 ([25]). Let + ⊆ C= and, ⊆ (C∗)= be irreducible algebraic subvarieties.

(1) Suppose dim+ = dim, and exp(+) ⊆ , . Then + is a translate of a linear sub-

space, and, is a translate of an algebraic subtorus.

(2) Suppose the exponential map exp: C= → (C∗)= induces a local analytic isomor-

phism +(0) → ,(1) . Then,(1) is the germ of an algebraic subtorus.

A standard dimension argument shows the following: if, and, ′ are irreducible alge-
braic subvarieties of (C∗)= which contain 1 and whose germs at 1 are locally analytically
isomorphic, then , � , ′. Using this fact, we obtain the following corollary to part ((2))
of the above theorem.

Corollary 12.9. Let + ⊆ C= and , ⊆ (C∗)= be irreducible algebraic subvarieties. Sup-

pose the exponential map exp: C= → (C∗)= induces a local analytic isomorphism +(0) �
,(1) . Then, is an algebraic subtorus and + is a rationally defined linear subspace.

12.6. Tangent cones and jump loci

Let - be a @-finite space. Its cohomology algebra, �∗ (-, C), is then @-finite; that is,
18 (-) < ∞ for 8 ≤ @. Thus, the resonance varieties R8

:
(-) := R8

:
(�∗(-,C)) are homoge-

neous algebraic subsets of the affine space �1 (-,C), for all 8 ≤ @ and : ≥ 0.
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The following basic relationship between the characteristic and resonance varieties
was established by Libgober in [86] in the case when - is a finite CW-complex and 8 is
arbitrary; a similar proof works in the generality that we work in here.

Theorem 12.10 ([86]). Suppose - is a @-finite space. Then, for all 8 ≤ @ and : ≥ 0,

TC1 (V 8
: (-)) ⊆ R

8
: (-). (12.4)

Putting together these inclusions with those from (12.3), we obtain the following corol-
lary.

Corollary 12.11. Suppose - is a @-finite space. Then, for all 8 ≤ @ and : ≥ 0,

g1 (V 8
: (-)) ⊆ TC1 (V 8

: (-)) ⊆ R
8
: (-). (12.5)

A particular case of this corollary is worth mentioning separately.

Corollary 12.12. Let � be a finitely generated group. Then, for all : ≥ 0,

g1 (V1
: (�)) ⊆ TC1(V1

: (�)) ⊆ R
1
: (�).

Using now Theorems 12.2 and 12.3, we obtain the following “Tangent Cone formula.”

Theorem 12.13. Suppose - is a @-finite space which admits a @-finite @-model �. Then,

for all 8 ≤ @ and : ≥ 0,

g1 (V 8
: (-)) = TC1 (V 8

: (-)) = R
8
: (�). (12.6)

This theorem, together with Theorem 9.3, yields the following corollary.

Corollary 12.14. Suppose � is a finitely generated group whose Malcev Lie algebra is

the LCS completion of a finitely presented Lie algebra. Then g1 (V1
: (�)) = TC1(V1

: (�)),
for all : ≥ 0.

In other words, if the first half of the Tangent Cone formula fails in degree 1, i.e., if
g1 (V1

: (�)) $ TC1 (V1
: (�)) for some : > 0, then m(�) � !̂, for any finitely presented Lie

algebra !. This will happen automatically if the variety TC1 (V1
: (�)) has an irreducible

component which is not a rationally defined linear subspace of �1 (�,C).

12.7. Formality and cohomology jump loci

The main connection between the formality property of a space and the geometry of its
cohomology jump loci is provided by the next result. This result, which was first proved
in degree 8 = 1 in [42], and in arbitrary degree in [40], is now an immediate consequence
of Theorem 12.13.

Corollary 12.15. Let - be a @-finite, @-formal space. Then, for all 8 ≤ @ and : ≥ 0,

g1 (V 8
: (-)) = TC1 (V 8

: (-)) = R
8
: (-). (12.7)



Formality and finiteness in rational homotopy theory 57

In particular, if � is a finitely generated, 1-formal group, then, for all : ≥ 0,

g1 (V1
: (�)) = TC1(V1

: (�)) = R1
: (�). (12.8)

As an application of Corollary 12.15, we have the following characterization of the
irreducible components of the cohomology jump loci in the formal setting.

Corollary 12.16. Suppose - is a @-finite, @-formal space. Then, for all 8 ≤ @ and : ≥ 0,

the following hold.

(1) All irreducible components of the resonance varietiesR8: (-) are rationally defined

linear subspaces of �1(-,C).
(2) All irreducible components of the characteristic varieties V 8

:
(-) which contain

the origin are algebraic subtori of Char(-)0, of the form exp(!), where ! runs

through the linear subspaces comprising R8
:
(-).

13. Algebraic models for smooth quasi-projective varieties

13.1. Compactifications and formality

A complex projective variety is a subset of a complex projective space CP=, defined as the
zero-locus of a homogeneous prime ideal in C[I0, . . . , I=]. A Zariski open subvariety of a
projective variety is called a quasi-projective variety. We will only consider here projective
and quasi-projective varieties which are connected and smooth.

If " is a smooth, projective variety—or, more generally, a compact Kähler manifold—
then the Hodge decomposition on the cohomology ring �∗(",C) imposes stringent con-
straints on the topological properties of " . For instance, in the famous paper of Deligne,
Griffiths, Morgan, and Sullivan [37] it is shown that every such manifold is formal.

Each smooth, quasi-projective variety - admits a good compactification. That is to
say, there is a smooth, complex projective variety - and a normal-crossings divisor �
such that - = - \ �. By a well-known theorem of Deligne, each cohomology group of -
admits a mixed Hodge structure. This additional structure puts definite constraints on the
algebraic topology of such manifolds.

For instance, if - admits a smooth compactification - with 11(-) = 0, the weight
1 filtration on �1(-,C) vanishes; in turn, by work of Morgan [100], this implies the 1-
formality of - . Thus, as noted by Kohno in [77], if - is the complement of a hypersurface
in CP=, then c1(-) is 1-formal.

In general, though, smooth quasi-projective varieties need not be 1-formal. Moreover,
even when they are 1-formal, they still can be non-formal.

Example 13.1. Let �×= be the product of = copies of an elliptic curve � . The closed
form 1

2

√
−1

∑=
8=1 3I8 ∧ 3Ī8 defines an integral cohomology class l ∈ �1,1 (�×=, Z). By

the Lefschetz theorem on (1, 1)-classes, l can be realized as the first Chern class of an
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algebraic line bundle over �×=. Let -= be the complement of the zero-section of this
bundle. Then -= is a smooth, quasi-projective variety which is not formal. In fact, -=
deform-retracts onto the (2= + 1)-dimensional Heisenberg nilmanifoldH= from Example
14.19, and so -= is (= − 1)-formal but not =-formal.

13.2. Algebraic models

As before, let - be a connected, smooth, complex quasi-projective variety, and choose
a smooth compactification - such that the complement is a finite union, � =

⋃
9∈� � 9 ,

of smooth divisors with normal crossings. There is then a rationally defined cdga, � =

�(-, �), called the Gysin model (or, the Morgan model) of the compactification, con-
structed as follows. As a C-vector space, �8 is the direct sum of all subspaces

�?,@ =
⊕

|( |=@
� ?

( ⋂

:∈(
�: ,C

)
(−@) (13.1)

with ? + @ = 8, where (−@) denotes the Tate twist. Furthermore, the multiplication in �
is induced by the cup-product in - , and has the property that �?,@ · �?′ ,@′ ⊆ �?+?′ ,@+@′,
while the differential, 3 : �?,@ → �?+2,@−1, is constructed from the Gysin maps arising
from intersections of divisors. The cdga just constructed depends on the compactifica-
tion -; for simplicity, though, we will denote it by �(-) when the compactification is
understood.

An important particular case is when our variety - has dimension 1. That is to say,
let Σ be a connected, possibly non-compact, smooth algebraic curve. Then Σ admits a
canonical compactification, Σ, and thus, a canonical Gysin model, �(Σ). We illustrate the
construction of this model in a simple situation, using the very explicit description given
by Bibby in [18] for complements of elliptic arrangements.

Example 13.2. Let Σ = �∗ be a once-punctured elliptic curve. Then Σ = � , and the Gysin
model �(Σ) is the algebra � =

∧(0, 1, 4)/(04, 14) on generators 0, 1 in bidegree (1, 0)
and generator 4 in bidegree (0, 1), with differential 3 : �→ � given by 30 = 31 = 0 and
34 = 01.

The above construction is functorial, in the following sense: If 5 : - → . is a mor-
phism of quasi-projective manifolds which extends to a regular map 5̄ : -→. between the
respective good compactifications, then there is an induced cdga morphism 5 ! : �(. ) →
�(-) which respects the bigradings.

Morgan showed in [100] that the Sullivan model �PL (-) is connected to the Gysin
model �(-) by a chain of quasi-isomorphisms preservingQ-structures. Moreover, setting
the weight of �?,@ equal to ? + 2@ defines a positive-weight decomposition on (�∗, 3).

In [45], Dupont constructed a Gysin-type model for certain types of quasi-projective
varieties, where the normal-crossings divisors hypothesis on the compactification can be
relaxed. More precisely, let A be an arrangement of smooth hypersurfaces in a smooth,
=-dimensional complex projective variety - , and supposeA locally looks like an arrange-
ment of hyperplanes in C=. There is then a cdga model for the complement, - = - \
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⋃
!∈A !, which builds on the combinatorial definition of the Orlik–Solomon algebra of a

hyperplane arrangement.
Finally, let A be an arrangement of complex linear subspaces in C=. Using a blow-up

construction, De Concini and Procesi gave in [36] a ‘wonderful’ cdga model for the com-
plement of such an arrangement. Based on a simplication of this model due to Yuzvinsky
[147], Feichtner and Yuzvinsky showed in [49] the following: If the intersection poset of
A is a geometric lattice, then the complement ofA is a formal space. In general, though,
the complement of a complex subspace arrangement need not be formal. For instance, the
polyhedral product constructions of [9], [38], [64] mentioned in Section 10.8 yield coordi-
nate subspace arrangements whose complements admit non-trivial Massey products over
the rationals.

13.3. Characteristic varieties

The structure of the jump loci for cohomology in rank 1 local systems on smooth, complex
projective and quasi-projective varieties (and, more generally, on Kähler and quasi-Kähler
manifolds) was determined through the work of Beauville [12], Green and Lazarsfeld [65],
Simpson [123], and Arapura [3]. The definitive structural result in the quasi-projective
setting was obtained by Budur and Wang in [24], building on the work of Dimca and
Papadima [40].

Theorem 13.3 ([24]). Let - be a smooth quasi-projective variety. Then each characteris-

tic varietyV 8
:
(-) is a finite union of torsion-translated subtori of Char(-).

Work of Arapura [3] explains how the non-translated subtori occurring in the above
decomposition ofV1

1 (-) arise. Let us say that a holomorphic map 5 : -→Σ is admissible

if 5 is surjective, has connected generic fiber, and the target Σ is a connected, smooth
complex curve with negative Euler characteristic. Up to reparametrization at the target,
the variety - admits only finitely many admissible maps; let E- be the set of equivalence
classes of such maps.

If 5 : - → Σ is an admissible map, it is readily verified thatV1
1 (Σ) = Char(Σ). Thus,

the image of the induced morphism between character groups, 5 ∗ : Char(Σ) → Char(-),
is an algebraic subtorus of Char(-).

Theorem 13.4 ([3]). The correspondence 5 ↦→ 5 ∗(Char(Σ)) defines a bĳection between

the set E- of equivalence classes of admissible maps from - to curves and the set of

positive-dimensional, irreducible components ofV1(-) containing 1.

The positive-dimensional, irreducible components ofV1
1 (-) which do not pass through

1 can be similarly described, by replacing the admissible maps with certain “orbifold fibra-
tions,” whereby multiple fibers are allowed.
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13.4. Resonance varieties

We now turn to the resonance varieties associated with a quasi-projective manifold, and
how they relate to the characteristic varieties. The Tangent Cone theorem takes a very
special form in this setting.

Theorem 13.5. Let - be a smooth, quasi-projective variety, and let �(-) be a Gysin

model for - . Then, for each 8 ≥ 0 and : ≥ 0,

g1 (V 8
: (-)) = TC1(V 8

: (-)) = R
8
: (�(-)) ⊆ R

8
: (-). (13.2)

Moreover, if - is @-formal, the last inclusion is an equality, for all 8 ≤ @.

In particular, the resonance varieties R8: (�(-)) are finite unions of rationally defined
linear subspaces of �1(-,C). On the other hand, the varieties R8: (-) can be much more
complicated; for instance, they may have non-linear irreducible components. If - is @-
formal, though, Theorem 13.2 guarantees this cannot happen, as long as 8 ≤ @.

13.5. Resonance in degree 1

Once again, let - be a smooth, quasi-projective variety, and let �(-) be the Gysin model
associated with a good compactification -. The degree 1 resonance varieties R1

1 (�(-)),
and, to some extent, R1

1 (-), admit a much more precise description than those in higher
degrees.

As in the setup from Theorem 13.4, let E- be the set of equivalence classes of admis-
sible maps from - to curves, and let 5 : - → Σ be such map. Recall from Section 13.2
that the curve Σ admits a canonical Gysin model, �(Σ). As noted in [40], the induced
cdga morphism, 5 ! : �(Σ) → �(-), is injective. Let 5 ∗ : �1(�(Σ)) → �1(�(-)) be the
induced homomorphism in cohomology.

Theorem 13.6 ([40, 92]). For a smooth, quasi-projective variety - , the decomposition of

R1
1 (�(-)) into (linear) irreducible components is given by

R1
1 (�(-)) =

⋃

5 ∈E-
5 ∗(�1 (�(Σ))). (13.3)

If - admits no admissible maps, that is, if E- = ∅, formula (13.3) should be understood
to mean R1

1 (�(-)) = {0} if 11(-) > 0 and R1
1 (�(-)) = ∅ if 11(-) = 0.

Example 13.7. Let - = -1 be the complex, smooth quasi-projective surface constructed
in Example 13.1. Clearly, this manifold is a C∗-bundle over � = (1 × (1 which deform-
retracts onto the 3-dimensional Heisenberg nilmanifold" =�R/�Z from Example 10.14.
Hence,V1

1 (-) = {1}, and so g1 (V1
1 (-)) =TC1 (V1

1 (-)) = {0}. On the other hand,R1
1 (-) =

C2, and so - is not 1-formal.

Under a 1-formality assumption, the usual resonance varieties R1
1 (-) admit a similar

description.
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Theorem 13.8 ([42]). Let - be a smooth, quasi-projective variety, and suppose - is 1-

formal. Then the decomposition into irreducible components of the first resonance variety

is given by

R1
1 (-) =

⋃

5 ∈E-
5 ∗ (�1(Σ,C)), (13.4)

with the same convention as before when E- = ∅. Moreover, all the (rationally defined)

linear subspaces in this decomposition have dimension at least 2, and any two distinct

ones intersect only at 0.

If - is compact, then the formality assumption in the above theorem is automatically
satisfied, due to [37]. Furthermore, the conclusion of the theorem can also be sharpened
in this case: each (non-trivial) irreducible component of R1

1 (-) is even-dimensional, of
dimension at least 4. In general, though, the resonance varieties of a quasi-projective man-
ifold can have non-linear components.

Example 13.9 ([42]). Let - = Conf(�, =) be the configuration space of = points on an
elliptic curve � . Letting {0, 1} be the standard basis of �1(�, C) = C2, we may iden-
tify �∗ (�×=,C) with

∧(01, 11, . . . , 0=, 1=) and find a presentation for �≤2(-,C) from
Totaro’s spectral sequence [142]. A computation then gives

R1
1 (Conf(�, =)) =

{
(G, H) ∈ C= × C=

�����

∑=
8=1 G8 =

∑=
8=1 H8 = 0,

G8H 9 − G 9 H8 = 0, for 1 ≤ 8 < 9 < =

}
. (13.5)

If = ≥ 3, this variety is irreducible and non-linear (in fact, it is a rational normal scroll),
from which we conclude that the configuration space Conf(�, =) is not 1-formal.

13.6. Large quasi-projective groups

Recall that a quasi-projective variety is a Zariski open subset of a projective variety.
We will say that a space - is a quasi-projective manifold if it is a connected, smooth,
complex quasi-projective variety. Every such manifold has the homotopy type of a finite
CW-complex.

A group� is said to be quasi-projective if it can be realized as the fundamental group
of a quasi-projective manifold. Clearly, every such a group admits a finite presentation.
We now turn to the question of deciding whether a quasi-projective group is large. It turns
out that a complete answer to this question can be given in terms of “admissible” maps to
curves.

A map 5 : - → � from a quasi-projective manifold - to a smooth complex curve
� is said to be admissible if it is regular, surjective, and has connected generic fiber. It
is easy to see that the homomorphism on fundamental groups induced by such a map,
5♯ : c1(-) → c1(�), is surjective. We denote by E(-) the family of admissible maps to
curves with negative Euler characteristic, modulo automorphisms of the target.

Deep work of Arapura [3] characterizes those positive-dimensional, irreducible com-
ponents of the characteristic variety V1

1 (-) which contain the origin of the character
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group Char(-): all such components are connected, affine subtori, which arise by pullback
of the character torus Char(�) along the homomorphism 5♯ : c1(-) → c1(�) induced by
some map 5 ∈ E(-).

Suppose now that � is a smooth complex curve with j(�) < 0. It is readily seen that
the fundamental group� = c1(�) surjects onto a free, non-abelian group, and so� is very
large. More generally, we have the following characterization of large, quasi-projective
groups.

Proposition 13.10 ([113]). Let - be a smooth quasi-projective variety. Then:

(1) c1(-) is large if and only if there is a finite cover . → - such that E(. ) ≠ ∅.
(2) c1(-) is very large if and only if E(-) ≠ ∅.

Consequently, if 11(-) > 0, then E(-) ≠ ∅ if and only if the analytic germ at 1 of
V1

1 (-) is not equal to {1}.

13.7. Resonance and largeness

To conclude this section, we rephrase the last condition in terms of resonance varieties.
As shown by Morgan [100], every quasi-projective manifold - admits a finite-dimensional
model �(-, �); such a ‘Gysin’ model depends on a smooth compactification - for which
the complement � = - \ - is a normal crossings divisor. Let � be a Gysin model for - ,
or any one of the more general Orlik–Solomon models constructed by Dupont in [46]. In
either case, let us note that all resonance varieties of � have positive weights, i.e., they are
invariant with respect to a C∗-action on �1(�) with positive weights.

Proposition 13.11 ([113]). Let - be a smooth, quasi-projective variety with 11(-) > 0
and let � be an Orlik–Solomon model for - . Then c1(-) is very large if and only if

R1
1 (�) ≠ {0}.

Example 13.12. Let Σ6 be a compact, connected Riemann surface of genus 6, and let
- = �Γ (Σ6) be the partial configuration space associated to a finite simple graph Γ. More
concretely, if = is the number of vertices of Γ, then �Γ (Σ6) is the complement in Σ=6
of the union of the diagonals I8 = I 9 , indexed by the edges of Γ. No convenient presen-
tation is available for the fundamental group �Γ,6 ≔ c1(�Γ (Σ6)). On the other hand,
the Orlik–Solomon model � for �Γ (Σ6) is much more approachable. Computing the res-
onance variety R1

1 (�) leads to a complete, explicit description of E(�Γ(Σ6)). Such a
description is given in [13], for all 6 ≥ 0 and for all finite graphs Γ, generalizing a result
from [17], valid only for chordal graphs. In particular, E(�Γ (Σ6)) = ∅, that is, �Γ,6 is
not very large, if and only if either 6 = 1 and Γ has no edges, or 6 = 0 and Γ contains no
complete subgraph on 4 vertices.
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14. Algebraic models for Lie group actions

14.1. Almost free actions and Hirsch extensions

Let  be a compact, connected, real Lie group. Consider the universal principal -bundle,
 → � → � , with contractible total space � and with base space the classifying
space � = � / . By a classical result of Hopf, the cohomology ring of  (with coef-
ficients in a field k of characteristic 0) is isomorphic to the cohomology ring of a finite
product of odd-dimensional spheres. That is, �∗( , k) � ∧

%∗, where %∗ is an oddly-
graded, finite-dimensional vector space, with homogeneous basis {CU ∈ %<U }, for some
odd integers <1, . . . , <A , where A = rank( ).

Now let " be a compact, connected, differentiable manifold on which the compact,
connected Lie group  acts smoothly. Both " and the orbit space # = "/ have the
homotopy type of finite �,-complexes. We consider the diagonal action of  on the
product � ×" , and form the Borel construction," = (� ×")/ . Let pr: " → #

be the map induced by the projection pr2 : � × " → " .
The  -action on " is said to be almost free if all its isotropy groups are finite. When

this assumption is met, the work of Allday and Halperin [1] provides a very useful Hirsch
extension model for the manifold " .

Theorem 14.1 ([1]). Suppose " admits an almost free  -action, with orbit space # =

"/ . There is then a map f : %∗→ /∗+1(�PL (#)) such that pr∗ ◦[f] is the transgression

in the principal bundle  → � × " → " , and

�PL (") ≃ �PL (#) ⊗f
∧
%.

This theorem may be applied for instance to the total space " of a principal  -bundle
over a compact manifold # = "/ . The next result identifies an interesting class of finite-
dimensional CW-spaces that have finite cdga models.

Proposition 14.2 ([114]). Let " be an almost free  -manifold. Write �∗ ( , k) =∧
%, for

some graded k-vector space %, and let < be the maximum degree of %∗.

(1) Suppose � is a @-finite @-model of the orbit space # = "/ , with @ ≥ < + 1. Then

a suitable Hirsch extension � = � ⊗g
∧
% is a @-finite @-model for " .

(2) Suppose # = "/ is @-formal. Then we may take �∗ = (�∗ (#, k), 0), and � =

� ⊗g
∧
% is a @-finite @-model of " with positive weights.

Restricting to principal  -bundles, we can say more. As before, identify �∗ ( , Q)
with

∧
% =

∧(C1, . . . , CA ).

Theorem 14.3 ([114]). Let # be a connected, finite CW-complex and let  be a com-

pact, connected, real Lie group. If # has a finite-dimensional rational model �, then any

Hirsch extension � = � ⊗g
∧
% can be realized as a finite-dimensional rational model of

some principal  -bundle " over # . When � has positive weights and the image of [g] is

generated by weighted-homogeneous elements, � also has positive weights.
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14.2. Graded regularity and partial formality

Fix an integer @ ≥ 0. Let �∗ be a connected commutative graded algebra over a field k of
characteristic 0. Following [114], we say that a homogeneous element 4 ∈ �: is a non-zero
divisor up to degree @ if the multiplication map 4· : �8 → �8+: is injective, for all 8 ≤ @.
(For @ = 0, this simply means that 4 ≠ 0.)

Likewise, we say that a sequence 41, . . . , 4A of homogeneous elements in �+ is @-

regular if the class of each 4U is a non-zero divisor up to degree @ − deg(4U) + 2 in the
quotient ring �/∑V<U 4V�. (This implies in particular that the elements 41, . . . , 4A are
linearly independent over k, when @ ≥ deg(4U) − 2 for all U.)

Theorem 14.4 ([114]). Suppose 41, . . . , 4A is an even-degree, @-regular sequence in �∗.
Then the Hirsch extension � = (� ⊗g

∧(C1, . . . , CA ), 3) with 3 = 0 on � and 3CU = g(CU) =
4U has the same @-type as (�/∑U 4U�, 0). In particular, � is @-formal.

Classical results of Borel and Chevalley provide the machinery for constructing graded
algebras which satisfy the hypothesis of Theorem 14.4, in the case when @ = ∞. Let
�∗ (� , k) be the cohomology algebra of the classifying space of a compact, connected
Lie group  . Let ) be a maximal torus in  , and let , = #)/) be the Weyl group. The
classifying space �) is the product of A copies of CP∞, where A is the rank of  . Its coho-
mology algebra is �∗ (�), k) = k[G1, . . . , GA ], with degree 2 free algebra generators, on
which, acts by graded algebra automorphisms.

The natural map ^ : �) → � identifies the cohomology algebra �∗ (� , k) with
the invariant subalgebra of the ,-action. More precisely, �∗ (� , k) is isomorphic to a
polynomial ring of the form k[ 51, . . . , 5A ], where each 5U is a ,-invariant polynomial of
even degree <U + 1, with <U as in Section 14.1. Moreover, 51, . . . , 5A forms a regular
sequence in k[G1, . . . , GA ].

Let * ⊆  be a closed, connected subgroup of a compact, connected Lie group. As
shown in [140], the Sullivan minimal model of the homogeneous space  /* is a Hirsch
extension of the form � = � ⊗g

∧(C1, . . . , CB), where �∗ is a free graded algebra on
finitely many even-degree generators, with zero differential, as in Theorem 14.4. As is
well-known, not all homogeneous spaces  /* are formal. Nevertheless, the criterion from
Theorem 14.4 may be used to gain information on their partial formality properties.

Example 14.5. For the homogeneous space Sp(5)/SU(5), the aforementioned algebra
�∗ has two free generators, G6 and G10, where subscripts denote degrees, and the sequence
from Theorem 14.4 is {G2

6, G
2
10, G6G10}, see [54]. It follows that Sp(5)/SU(5) is 19-formal.

On the other hand, a computation with Massey triple products shows that this estimate is
sharp, that is, Sp(5)/SU(5) is not 20-formal.

14.3. Partial formality of Q-manifolds

Let " be an almost free  -manifold. We write �∗ ( , k) = ∧(C1, . . . , CA ), and denote the
transgression of CU by 4U ∈ �<U+1("/ , k). As before, set < = max{<U}.
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Theorem 14.6 ([114]). Suppose the  -action on " is almost free, the orbit space # =

"/ is :-formal, for some : ≥ < + 1, and 41, . . . , 4A form a @-regular sequence in

�∗ (#,k), for some @ ≤ :. Then the quotient algebra�∗ (#,k)/∑AU=1 4U�
∗(#,k), equipped

with the zero differential, is a finite-dimensional @-model for "; in particular, " is @-

formal.

As illustrated in the next two examples, the @-regularity assumption from Theorem
14.6 is optimal with respect to the @-formality conclusion for the manifold " , at least in
the case when  = (1 or (3.

Example 14.7. Let " =H 1 be the 3-dimensional Heisenberg nilmanifold from Example
10.14. This manifold is the total space of the principal (1-bundle over the formal manifold
# = (1 × (1, with Euler class 4 ∈ �2 (#,Z) equal to the orientation class. In this case, the
sequence {4} is 0-regular, but not 1-regular in �∗(#, k). In fact, as mentioned previously,
" is not 1-formal. As explained in Example 14.19, this is the first manifold in a series,
H=, where (= − 1)-regularity implies (= − 1)-formality in an optimal way.

Example 14.8. Let " to be the total space of the principal (3-bundle over # = (2 × (2

obtained by pulling back the Hopf bundle (7 → (4 along a degree-one map # → (4. As
above, # is formal, and the Euler class 4 ∈ �4(#, Z) is the orientation class. In this case,
{4} is 3-regular, but not 4-regular in �∗ (#, k), and Theorem 14.6 says that " is 3-formal.
Direct computation with the minimal model of " shows that, in fact, " is not 4-formal.

14.4. Malcev completion and representation varieties

Let � be a 2-finite cdga with zero differential, and let � =� ⊗g
∧
% be a Hirsch extension,

where % is an oddly-graded, finite-dimensional vector space.

Theorem 14.9 ([114]). The holonomy Lie algebra h(�) admits a finite presentation with

generators in degree 1 and relations in degrees 2 and 3.

Corollary 14.10 ([114]). Suppose " supports an almost free  -action with 2-formal

orbit space. Then:

(1) The group c = c1(") is filtered-formal. More precisely, the Malcev Lie algebra

m(c) is isomorphic to the lcs completion of Lie(�1(c, k))/r, where r is a homo-

geneous ideal generated in degrees 2 and 3.

(2) For every complex linear algebraic group �, the germ at the origin of the repre-

sentation variety Homgr(c, �) is defined by quadrics and cubics only.

The second statement in the above corollary is analogous to the quadraticity obstruc-
tion for fundamental groups of compact Kähler manifolds obtained by Goldman–Millson
in [63]. Note that the corollary applies to principal  -bundles over formal manifolds.
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14.5. Orbifold fundamental groups

Assume now that " is an almost free  -manifold. By [23, Theorem 4.3.18], the projection
? : " → "/ induces a natural epimorphism 5 : c1(")։ corb

1 ("/ ) between orbifold
fundamental groups.

Theorem 14.11 ([114]). Suppose that the  -action on " is almost free and the trans-

gression %∗ → �∗+1(" , k) � �∗+1("/ , k) is injective in degree 1. Then the following

hold.

(1) If the orbit space # = "/ has a 2-finite 2-model over k ⊆ C, then the homomor-

phism 5 : c1(") ։ corb
1 (#) induces an analytic isomorphism between the germs

at 1 ofV1
:
(corb

1 (#)) andV1
:
(c1(")), for all :.

(2) If # is 2-formal, then 5 induces an analytic isomorphism between the germs at 1
of Hom(corb

1 (#), SL2(C)) and Hom(c1("), SL2(C)).

Example 14.12. Let  be a compact, connected Lie group, and identify �∗( ,Q) with∧
%∗ . Let # be a compact, formal manifold, and assume 12(#) ≥ B, where B = dim %1

 

(for instance, take # to be the product of at least B compact Kähler manifolds). There is
then a degree-preserving linear map, g : %∗ → �∗+1(#,Q), which is injective in degree 1.
By Theorem 14.3, such a map can be realized as the transgression in a principal  -bundle,
"g → # , and the manifold "g satisfies the assumptions from Theorem 14.11.

Theorem 14.11 may also be applied to a Seifert fibered 3-manifold with non-zero Euler
class, ? : " → "/(1 = Σ6. In this case,V1

:
(") (1) is isomorphic toV1

:
(Σ6) (1) , for all :,

while Hom(c1("), SL2 (C)) (1) � Hom(c1(Σ6), SL2 (C)) (1) .

14.6. Sasakian geometry

The machinery outlined above has some noteworthy consequences for the topology of
compact Sasakian manifolds, which are related to formality properties, representation
varieties and cohomology jump loci. A comprehensive reference for Sasakian geometry is
the book of Boyer and Galicki [23].

Let "2=+1 be a compact Sasakian manifold of dimension 2= + 1. Without loss of
essential generality, we may assume that the Sasakian structure is quasi-regular. A basic
structural result in Sasakian geometry guarantees that, in this case, " supports an almost
free circle action. Furthermore, the quotient space, # = "/(1, is a compact Kähler orb-
ifold, with Kähler class ℎ ∈ �2(#, k) satisfying the Hard Lefschetz property, that is,
multiplication by ℎ: defines an isomorphism

�=−: (#, k) �=+: (#, k)� (14.1)

for each 1 ≤ : ≤ =; see [23, Proposition 7.2.2 and Theorem 7.2.9]. The thesis of Tievsky
[141, §4.3] provides a very useful model for a Sasakian manifold.
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Theorem 14.13 ([141]). Every compact Sasakian manifold " admits as a finite model

over R the Hirsch extension �∗ (") = (�∗ (#,R) ⊗ℎ
∧(C), 3), where 3 is zero on �∗ (#,R)

and 3C = ℎ, the Kähler class of # .

Sasakian geometry is an odd-dimensional analog of Kähler geometry. From this point
of view, the above theorem is a rough analog of the main result on the algebraic topol-
ogy of compact Kähler manifolds from [37], guaranteeing that such manifolds are formal.
Theorem 14.13 only says that " behaves like an almost free compact (1-manifold with
formal orbit space. A result from [11] establishes the formality of the orbifold de Rham
algebra of a compact Kähler orbifold. Unfortunately, this is not enough for applying The-
orem 14.6, since the authors of [11] do not prove that the orbifold de Rham algebra is
weakly equivalent to the Sullivan de Rham algebra.

By construction, the Tievsky model �∗(") is a real cdga defined over Q. Neverthe-
less, in view of Remark 8.1, it does not follow from [141] that �∗ (") is a model for "
over Q.

However, we can say something very useful regarding rational models for Sasakian
manifolds. We start with a lemma and will come back to this point in Theorem 14.18.

Lemma 14.14 ([114]). The Tievsky model �∗
R
(") = (�∗ (#, R) ⊗ℎ

∧(C), 3) is a finite

model with positive weights for " .

Corollary 14.15 ([114]). Let " be a compact Sasakian manifold. For each 8, : ≥ 0, all

irreducible components of the characteristic variety V 8
: (") passing through 1 are alge-

braic subtori of the character group �1 (",C∗).

A well-known, direct relationship between Kähler and Sasakian geometry is as fol-
lows. Let # be a compact Kähler manifold such that the Kähler class is integral, i.e.,
ℎ ∈ �2 (#, Z), and let " be the total space of the principal (1-bundle classified by ℎ.
Then " is a regular Sasakian manifold. A concrete class of examples is provided by the
Heisenberg manifoldsH= from Example 14.19 below.

14.7. Partial formality of Sasakian manifolds

Let "2=+1 be a compact Sasakian manifold, with fundamental group� = c1("). One may
ask: Is the group c (or, equivalently, the manifold ") 1-formal? When = = 1, the answer
is clearly negative, a simple example being provided by the Heisenberg manifold H 1. In
[76, Theorem 1.1], Kasuya claims that the case = = 1 is exceptional, in the following sense.

Claim 14.16. Every compact Sasakian manifold of dimension 2= + 1 is 1-formal over R,

provided = > 1.

As pointed out in [114], the proof from [76] has a gap, which we briefly explain.
Given a cdga �, the decomposable part of �2(�) is the linear subspace ��2(�) defined
as the image of the product map in cohomology,�1(�) ∧�1(�) → �2(�). What Kasuya
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actually shows is that
��2(M1 (")) = �2(M1 (")), (14.2)

for a compact Sasakian manifold"2=+1 with = > 1, whereM1(") is the 1-minimal model
of " over R. Equality (14.2) is an easy consequence of 1-formality. Kasuya deduces the
1-formality of " from (14.2), by invoking as a crucial tool Lemma 3.17 from [2]. Unfor-
tunately, though, this lemma is false, as shown by Măcinic in [91]. Nevertheless, the next
theorem proves Claim 14.16 in a stronger form, while also recovering equality (14.2).

Theorem 14.17 ([114]). Every compact Sasakian manifold " of dimension 2= + 1 is

(= − 1)-formal, over an arbitrary field k of characteristic 0.

The next result makes Theorem 14.17 more precise, by constructing an explicit finite,
(= − 1)-model with zero differential for " over any field of characteristic 0.

Theorem 14.18 ([114]). Let " be a compact Sasakian manifold " of dimension 2= + 1.

The Sullivan model of " over a field k of characteristic 0 has the same (= − 1)-type over k

as the cdga (�∗ (#, k)/ℎ · �∗(#, k), 0), where # = "/(1 and ℎ ∈ �2 (#, k) is the Kähler

class.

As illustrated by the next example, the conclusion of Theorem 14.17 is optimal.

Example 14.19. Let � = (1 × (1 be an elliptic complex curve, and let # = �×= be
the product of = such curves, with Kähler form l =

∑=
8=1 3G8 ∧ 3H8. The correspond-

ing Sasakian manifold is the (2= + 1)-dimensional Heisenberg nilmanifoldH=. Theorem
14.17 guarantees that H= is (= − 1)-formal. As noted in [91], though (see also Example
3.6), the manifoldH= is not =-formal.

14.8. Sasakian groups

A group c is said to be a Sasakian group if it can be realized as the fundamental group of
a compact, Sasakian manifold. A major open problem in the field (see e.g. [23, Chapter 7]
or [32]) is: “Which finitely presented groups are Sasakian?”

A first, well-known obstruction is that the first Betti number 11(c) must be even, see
for instance the references listed in [32]. Much more subtle obstructions are provided by
the following result. Fix a field k of characteristic 0.

Corollary 14.20 ([114]). Let c = c1("2=+1) be a Sasakian group. Then:

(1) The Malcev Lie algebra m(c, k) is the lcs completion of the quotient of the free

Lie algebra Lie(�1(c, k)) by an ideal generated in degrees 2 and 3. Moreover,

this Lie algebra presentation can be explicitly described in terms of the graded

ring �∗ ("/(1, k) and the Kähler class ℎ ∈ �2 ("/(1, k).
(2) The group c is filtered-formal.

(3) For every complex linear algebraic group �, the germ at the origin of the repre-

sentation variety Hom(c, �) is defined by quadrics and cubics only.
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As an application of Corollary 14.15, we obtain another (independent) obstruction to
Sasakianity.

Corollary 14.21 ([114]). Let c be a Sasakian group. For each : ≥ 0, all irreducible

components of the characteristic variety V1
: (c) passing through 1 are algebraic subtori

of the character group Hom(c,C∗).

By Theorem 14.13, the R-homotopy type of a compact Sasakian manifold " depends
only on the cohomology ring �∗ ("/(1,R) and the Kähler class ℎ ∈ �2("/(1,Q). Sur-
prisingly enough, it turns out that the germs at 1 of certain representation varieties and
jump loci of c1(") depend only on the graded cohomology ring of "/(1.

Corollary 14.22 ([114]). Let " be a compact Sasakian manifold, and let � = SL2(C).
Then the germ at 1 of Hom(c1("), �) depends only on the graded ring �∗ ("/(1, C)
and the Lie algebra of �, in an explicit way. Similarly, the germs at 1 of the characteristic

varietiesV1
: (c1(")) depend (explicitly) only on �∗ ("/(1,C).

15. Algebraic models for closed 3-manifolds

In this final section we give a partial characterization of the formality and finiteness prop-
erties for rational models of closed 3-manifolds.

15.1. The intersection form of a 3-manifold

Let " be a compact, connected 3-manifold without boundary. For short, we shall refer to
" as being a closed 3-manifold. Throughout, we will also assume that " is orientable.

Fix an orientation class ["] ∈ �3 (",Z) � Z. With this choice, the cup product on "
determines an alternating 3-form `" on �1(", Z), given by

`" (0 ∧ 1 ∧ 2) = 〈0 ∪ 1 ∪ 2, ["]〉, (15.1)

where 〈·, ·〉 denotes the Kronecker pairing. In turn, the cup-product map
∧2 �1 (",Z) →

�2 (", Z) is determined by the intersection form `" via 〈0 ∪ 1, W〉 = `" (0 ∧ 1 ∧ 2),
where 2 is the Poincaré dual of W ∈ �2(", Z).

In [136], Sullivan proved the following result.

Theorem 15.1 ([136]). For every finitely generated, torsion-free abelian group � and

every 3-form ` ∈∧3�∨, there is a closed, oriented 3-manifold" with �1(",Z) = � and

cup-product form `" = `.

Such a 3-manifold can be constructed by a process known as “Borromean surgery.”
More precisely, if = = rank�, a manifold" with the claimed properties may be defined as
0-framed surgery on a link in (3 obtained from the trivial =-component link by replacing
a collection of trivial 3-string braids by the corresponding collection of 3-string braids
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whose closures are the Borromean rings. For instance, 0-surgery on the Borromean rings
produces the 3-torus )3.

15.2. Poincaré duality and Koszul complex

We now fix a basis {41, . . . , 4=} for the free abelian group �1(", Z), and we choose
{4∨1 , . . . , 4

∨
=} as basis for the torsion-free part of �2(", Z), where 4∨8 denotes the Kro-

necker dual of the Poincaré dual of 48 . Writing

`" =
∑

1≤8< 9<:≤=
`8 9:484 94: , (15.2)

where `8 9: = `(48 ∧ 4 9 ∧ 4: ) and using formula (15.1), we find that 484 9 =
∑=
:=1 `8 9:4

∨
: .

In order to identify the resonance varieties of the cohomology algebra �∗ = �∗ (",C),
we let ( = Sym(�1) be the symmetric algebra on �1 = �1 (",C), and we identify ( with
the polynomial ring C[G1, . . . , G=]. The Koszul complex from (11.2) then has the form

�0 ⊗C ( �1 ⊗C ( �2 ⊗C ( �3 ⊗C (,
X0
�

X1
�

X2
� (15.3)

where the differentials are the (-linear maps given by X@
�
(D) = ∑=

9=1 4 9D ⊗ G 9 for D ∈ �@ .

In our chosen basis, the matrix of X2
�

is the transpose of X0
�
=

(
G1 · · · G=

)
, while the

matrix of X1
� is an = × = matrix of linear forms in the variables G8 , given by X1

�(48) =∑=
9=1

∑=
:=1 ` 98:4

∨
: ⊗ G 9 .

Note that the matrix X" ≔ X1
�

is skew-symmetric; moreover, it is singular, since the
vector (G1, . . . , G=) is in its kernel. Hence, both the determinant det(X1

�
) and the Pfaffian

pf (X" ) vanish. Let X" (8; 9) be the sub-matrix obtained from X" by deleting the 8-th row
and 9-th column. We then have the following lemma, due to Turaev [145].

Lemma 15.2 ([145]). Assume = ≥ 3. There is then a polynomial Det(`) ∈ ( such that

det X" (8; 9) = (−1)8+ 9G8G 9 Det(`). Moreover, if = is even, then Det(`) = 0, while if = is

odd, then Det(`) = Pf (`)2, where pf (X" (8; 8)) = (−1)8+1G8 Pf (`).

15.3. Resonance varieties of 3-manifolds

LetR8: (") be the resonance varieties associated to the cohomology algebra � =�∗(",C)
of a closed, orientable 3-manifold " . As shown in [127], Poincaré duality implies that
R2
: (") = R

1
: (") for 1 ≤ : ≤ =, while R3

1 (") = R
0
1 (") = {0} if = > 0. The basic structure

of the degree 1, depth 1 resonance varieties is given by the following theorem.

Theorem 15.3 ([127], [128]). Let " be a closed, orientable 3-manifold. Set = = 11(")
and let `" be the associated alternating 3-form. Then

R1
1 (") =




∅ if = = 0;

{0} if = = 1 or = = 3 and `" has rank 3;

V(Pf (`" )) if = is odd, = > 3, and `" is generic;

�1(";C) otherwise.

(15.4)
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In the case when = = 26 + 1 with 6 > 1, we say that the alternating form `" is generic

(in the sense of Berceanu and Papadima [14]) if there is an element 2 ∈ �1 such that the
2-form W2 ∈ �1 ∧ �1 defined by W2 (0 ∧ 1) = `" (0 ∧ 1 ∧ 2) for 0, 1 ∈ �1 has maximal
rank, that is, W62 ≠ 0 in

∧26�1. For detailed information on the resonance varieties R1
: (")

in depth : > 1 we refer to [127].

15.4. Characteristic varieties of 3-manifolds

As noted in [128], Poincaré duality with local coefficients imposes the same type of con-
straints on the characteristic varieties of a closed, orientable 3-manifold "; for instance,
V1
:
(") � V2

:
("), for all : ≥ 0. Best understood is the variety V1

1 ("), due to its close
connection to both the resonance variety R1

1 (") and to the Alexander polynomial Δ" ,
which we define next.

Let � = �ab/Tors(�ab) be the maximal torsion-free abelian quotient of the group
� = c1(", G0), and let @ : "� → " be the regular cover corresponding to the projec-
tion � ։ �. The Alexander module of " is defined as the relative homology group
�" = �1("� , @−1(G0);Z), viewed as a module over the Noetherian ring Z�. Finally, let
�1 (�" ) ⊆ Z� be the ideal of codimension 1 minors in a Z�-presentation for �" . The
Alexander polynomial of " is then defined as the greatest common divisor of the elements
in this determinantal ideal, Δ" = gcd(�1(�" )).

As noted in [41] and [128], work of McMullen [98] and Turaev [145] yields the fol-
lowing relationship between the first characteristic variety and the Alexander polynomial
of " .

Proposition 15.4 ([41], [128]). Let " be a closed, orientable, 3-dimensional manifold.

Then

V1
1 (") ∩ Char(")0 = V(Δ" ) ∪ {1}. (15.5)

Moreover, if 11(") ≥ 4, thenV1
1 (") ∩ Char(")0 = V(Δ" ).

The next theorem shows that the second half of the Tangent Cone formula (12.7) holds
for a large class of closed 3-manifolds with odd first Betti number (regardless of whether
those manifolds are 1-formal), yet fails for most 3-manifolds with even first Betti number.

Theorem 15.5 ([128]). Let " be a closed, orientable 3-manifold, and set = = 11(").
(1) If = ≤ 1, or = is odd, = ≥ 3, and `" is generic, then TC1 (V1

1 (")) = R
1
1 (").

(2) If = is even, = ≥ 2, then TC1(V1
1 (")) = R

1
1 (") if and only if Δ" = 0.

The information contained in the cohomology jump loci and the Alexander polynomi-
als provides a method for determining which 3-manifold groups can also be realized as
fundamental groups of Kähler manifolds, or smooth, quasi-projective varieties. We sum-
marize the relevant results from [44], [43], and [61], as follows.

Theorem 15.6. Let � = c1(") be the fundamental group of a closed, orientable 3-

manifold " . Then:
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[44] � � c1(-), for some compact Kähler manifold - if and only if � is a finite

subgroup of SO(4), acting freely on (3.

[43] � is 1-formal and � � c1(-), for some smooth quasi-projective variety - if and

only if m(�) � m(�=) or m(�) � m(Z × c1(Σ6)).
[61] If � � c1(-), for some smooth quasi-projective variety - , then all the prime

components of " are graph manifolds.

15.5. Finite models for 3-manifolds

The previous theorem leads to obstructions to the existence of cdga models for closed 3-
manifolds with specified finiteness properties. These obstructions are quite effective since
they are expressed solely in terms of the Alexander polynomial of the manifold.

Theorem 15.7 ([128]). Let " be a closed, orientable, 3-manifold, and set = = 11(").

(1) If = ≤ 1, then " is formal, and has the rational homotopy type of (3 or (1 × (2.

(2) If = is even, = ≥ 2, and Δ" ≠ 0, then " is not 1-formal.

(3) If Δ" ≠ 0, yet Δ" (1) = 0 and TC1(+ (Δ" )) is not a finite union of rationally

defined linear subspaces, then " admits no 1-finite 1-model.

Proof. For completeness, we give a proof of this result. As shown in [59], the 1-formality
of " is equivalent to formality. On the other hand, we saw in Example 10.23 that any
finitely generated group � with 11(�) ≤ 1 is 1-formal. Thus, if 11(") = 0 or 1, then "
is formal, and so, as noted in [108], " must be rationally homotopy equivalent to either
(3 or (1 × (2.

Now suppose 11(") is even and positive, and Δ" ≠ 0. Then, by Theorem 15.5, we
have that TC1(V1

1 (")) ≠ R
1
1 ("), and so, by Corollary 12.15, " is not 1-formal.

Finally, if Δ" ≠ 0 and Δ" (1) = 0, it follows from Proposition 15.4 thatV1
1 (") and

V(Δ" ) share the same tangent cone and exponential tangent cone at 1. On the other hand,
if not all the irreducible components of TC1(V(Δ" )) are rational linear subspaces, then,
by Lemma 12.7, g1 (V(Δ" )) ≠ TC1 (V(Δ" )). Therefore, if both assumptions are satisfied,
g1 (V1

1 (")) $ TC1 (V1
1 (")), and so, by Theorem 12.13, " cannot have a 1-finite 1-

model.

Consequently, if m=m(�) is the Malcev Lie algebra of� = c1("), then the following
hold in the three cases delineated in Theorem 15.7: (1) m = 0 (if = = 0) or m =Q (if = = 1);
(2) m is not the LCS completion of a finitely generated, quadratic Lie algebra; and (3) m
is not the LCS completion of a finitely presented Lie algebra.

The next two examples illustrate how the finiteness obstructions provided by Theorem
15.7 work in cases (2) and (3).

Example 15.8. The Heisenberg 3-dimensional nilmanifold " admits a finite model, for
instance, � =

(∧(0, 1, 2), 3
)

with 30 = 31 = 0 and 32 = 01. Nevertheless, " is not 1-
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formal, since 11(") = 2 and Δ" = 1. Furthermore, `" = 0, and so TC1(V1
1 (")) = {0},

whereas R1
1 (") = C2.

Example 15.9. Let " be a closed, orientable 3-manifold with �1(", Z) = Z2 and Δ" =

(C1 + C2) (C1C2 + 1) − 4C1C2 (such a manifold exists by [145, VII.5.3]). Then TC1(V1
1 (")) =

{G2
1 + G2

2 = 0} decomposes as the union of two lines defined over C, but not over Q; hence,
" admits no 1-finite 1-model. Furthermore, g1 (V1

1 (")) = {0} is properly contained in
TC1(V1

1 (")).

15.6. 3-manifolds fibering over the circle

We conclude this section with a discussion of the 1-formality property for closed 3-
manifolds that fiber over (1. We start with a result which relates the notion of 1-formality
of a semidirect product of the form� = ⊳ Z to the algebraic monodromy of the extension.

Theorem 15.10 ([110]). Let 1→  → � → Z→ 1 be a short exact sequence of groups.

Suppose � is finitely presented and 1-formal, and 11( ) < ∞. Then the eigenvalue 1 of

the monodromy action on �1 ( ,C) has only 1 × 1 Jordan blocks.

This theorem yields as an immediate corollary a substantial extension of a result of
Fernández, Gray, and Morgan [57], where the non-formality of the total spaces of certain
bundles is established by a different method, using Massey products.

Corollary 15.11 ([110]). Let � → - → (1 be a smooth fibration whose fiber � is con-

nected and has the homotopy type of a CW-complex with finite 2-skeleton, and for which

the monodromy on �1(�,C) has eigenvalue 1, with a Jordan block of size greater than 1.

Then the group � = c1(-) is not 1-formal.

Next, we recall a result from [109], which is based on the interplay between the Bieri–
Neumann–Strebel invariant,Σ1 (�), and the (first) resonance variety,R1

1 (�), of a 1-formal
group �.

Proposition 15.12 ([109]). Let " be a closed, orientable 3-manifold which fibers over

the circle. If 11(") is even, then " is not 1-formal.

Combining the results above yields the following corollary, which puts strong restric-
tions on the algebraic monodromy of a formal 3-manifold fibering over the circle.

Corollary 15.13 ([110]). Let " be a closed, orientable, 1-formal 3-manifold. Suppose "

fibers over the circle, and the algebraic monodromy has 1 as an eigenvalue. Then, there

are an even number of 1 × 1 Jordan blocks for this eigenvalue, and no higher size Jordan

blocks.

Indeed, by Corollary 15.11, the algebraic monodromy has only 1 × 1 Jordan blocks for
the eigenvalue 1. Let < be the number of such blocks. From the Wang sequence of the
fibration, we deduce that 11(") = < + 1. By Proposition 15.12, < must be even.
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Example 15.14. The 3-dimensional Heisenberg manifold " from Examples 10.14 and
10.27 fibers over (1 with fiber (1 × (1 and monodromy given by the matrix

(
1 1
0 1

)
. Since

this is a Jordan block of size 2 with eigenvalue 1, we see once again that " is not 1-formal.
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