MTH3483 — TOPICS IN TOPOLOGY — FALL 1998

PROF. A. SUCIU

Homework 3

- 1. Let ξ be a k-plane bundle with transition functions $\{\phi_{ij}\}$. Show:
 - (a) If k = 1, then $\xi^{\otimes m} := \xi \otimes \cdots \otimes \xi(m \text{ factors})$ has transition functions $\{\phi_{ij}^m\}$.
 - (b) The determinant bundle det $\xi := \wedge^k \xi$ has transition functions $\{\det \phi_{ij}\}$.
 - (c) $\det(\mathbf{T}^*(G_k(\mathbb{R}^n))) \cong (\det \gamma_k(\mathbb{R}^n))^{\otimes n}$.
- 2. Let γ be the tautological complex line bundle over \mathbb{CP}^n .
 - (a) Find the transition functions of γ with respect to the usual cover of \mathbb{CP}^n .
 - (b) Show: {sections of γ^m } \cong {homogeneous polynomials in \mathbb{C}^{n+1} of degree m}.
- 3. Let $\widetilde{G}_k(\mathbb{R}^n)$ be the Grasmannian of *oriented* k-planes in \mathbb{R}^n .
 - (a) There is a double covering $\mathbb{Z}_2 \to \widetilde{G}_k(\mathbb{R}^n) \to G_k(\mathbb{R}^n)$.
 - (b) There is a principal bundle $\mathrm{SO}(k) \times \mathrm{SO}(n-k) \to \mathrm{SO}(n) \to \widetilde{G}_k(\mathbb{R}^n).$
 - (c) Interpret the covering map $G_k(\mathbb{R}^n) \to G_k(\mathbb{R}^n)$ from part (a) as a map of homogeneous spaces, $SO(n)/SO(k) \times SO(n-k) \to O(n)/O(k) \times O(n-k)$.
 - (d) Show that $\widetilde{G}_2(\mathbb{R}^4)$ is diffeomorphic to $S^2 \times S^2$.
 - (e) What is the involution on $S^2 \times S^2$ that corresponds to the non-trivial covering map $\widetilde{G}_2(\mathbb{R}^4) \to \widetilde{G}_2(\mathbb{R}^4)$?
- 4. Let X be an n-connected CW-complex and Y an m-connected CW-complex. Show that their join, X * Y, is (n + m + 1)-connected.
- 5. Show that the inclusion-induced map $\pi_i(O(k) \to \pi_i(O(k+1)))$ is an epimorphism for i = k 1 and an isomorphism for i < k 1. Deduce that $\pi_i(V_k(\mathbb{R}^n)) = 0$.
- 6. Let G be a Lie group and H a closed subgroup. Show:
 - (a) If K is a closed subgroup of H, there is as an H-bundle $H/K \to G/K \to G/H$.
 - (b) If K is also a normal subgroup of H, this in fact a principal H/K-bundle.
 - (c) There is an *H*-bundle $G/H \to BH \to BG$.
- 7. Let ξ be a principal G-bundle over B with classifying map $f : B \to BG$. Let H be a closed subgroup of G, and $i : H \to G$ the inclusion. Show:

 ξ reduces to $H \iff \exists g : B \to BH$ such that $Bi \circ g \sim f$.