MTH3483 — TOPICS IN TOPOLOGY — FALL 1998

PROF. A. SUCIU

Homework 2

- 1. Let ξ be a principal *G*-bundle. Show:
 - (a) $f^*(\xi)$ is a principal *G*-bundle.
 - (b) If G acts effectively on F, then $f^*(\xi)[F] \cong f^*(\xi[F])$.
- 2. Given a principal G-bundle $P \to B$ and a closed subgroup H of G, show:
 - (a) $P/H \to B$ is a G-bundle with fiber G/H associated to $P \to B$.
 - (b) If H is also a normal subgroup of G, then $P/H \to B$ is a principal G/H-bundle.
- 3. Let G be a topological group acting on a space X. Show:
 - (a) If $A \subset X$ is open, then $G \cdot A$ is open.
 - (b) If G is compact and $A \subset X$ is closed, then $G \cdot A$ is closed.
 - (c) If G is compact and $A \subset X$ is compact, then $G \cdot A$ is compact.
 - (d) If X is Hausdorff, then X^G is Hausdorff.
 - (e) If G is compact and X is Hausdorff, then X/G is Hausdorff.
 - (f) The compactness assumption in part (e) is necessary. [Hint: Find an \mathbb{R} -action on \mathbb{R}^2 such that \mathbb{R}^2/\mathbb{R} is not Hausdorff.]
- 4. Let ξ_n be the principal \mathbb{Z}_n -bundle $p_n : S^1 \to S^1$, where $p_n(z) = z^n$. Consider the associated \mathbb{Z}_n -bundle $\eta_n = \xi_n[S^1]$, where $\mathbb{Z}_n \subset S^1$ acts on S^1 by left-translation. Show that η_n is not trivial as a \mathbb{Z}_n -bundle, but it is trivial as a (principal) S^1 -bundle.
- 5. Consider the \mathbb{Z}_n -action on S^3 given by $(z_1, z_2) \mapsto (\xi z_1, \xi z_2)$, where $\xi = e^{2\pi i/n}$. Let L_n be the orbit space.
 - (a) Define a principal S^1 -bundle $L_n \to S^2$.
 - (b) What is the clutching function of this bundle?
 - (c) Show that $L_1 = S^3$ and $L_2 = SO(3)$.
- 6. Let $p: E \to B$ be a real vector bundle of rank k. Let

 $F(E) = \{(b, \mathbf{f}) \mid b \in B \text{ and } \mathbf{f} = (f_1, \dots, f_n) \text{ is a basis for } p^{-1}(b)\}$

be the space of frames of E, and let $q: F(E) \to B$ be given by $q(b, \mathbf{f}) = b$. Show that:

- (a) $q: F(E) \to B$ is a principal $GL(n, \mathbb{R})$ -bundle.
- (b) The given vector bundle is associated to its frame bundle via the natural action of $\operatorname{GL}(n,\mathbb{R})$ on \mathbb{R}^n , i.e., $E = F(E) \times_{\operatorname{GL}(n,\mathbb{R})} \mathbb{R}^n$.