1.1. DEFINITION. A bundle (E, B, p) consists of a total space E, a base space B, and a projection map $p: E \to B$ such that: for every $b \in B$, there exists an open neighborhood U of b, a space F, and a homeomorphism $\phi: U \times F \to p^{-1}(U)$ such that the following diagram commutes:

$$\begin{array}{cccc} U \times F & \stackrel{\phi}{\longrightarrow} & p^{-1}(U) \\ & & & & \downarrow^{p} \\ & & & \downarrow^{p} \\ & & & U \end{array}$$

The condition above is referred to as *local triviality* of the bundle, and the pair (U, ϕ) as *local coordinates* about b.

Set $E_b := p^{-1}(b)$; this is called the *fiber over* b, and is identified to F via ϕ : {b} × $F \xrightarrow{\sim} E_b$. If b' is another point in U, we also have $\phi : {b'} × F \xrightarrow{\sim} E_{b'}$, and so $E_b \approx E_{b'}$. Hence, if B is path-connected (which we henceforth will allways assume), all the fibers are homeomorphic to F, the *typical fiber* of the bundle. We will often write the bundle as $F \to E \xrightarrow{p} B$ and say that E fibers over B with fiber F.

1.2. REMARK. The map p is onto. That's because $p^{-1}(b) \approx F \neq \emptyset$.

1.3. REMARK. The map p is open. To see this, it is enough to show that the restriction $p: p^{-1}(U) \to U$ is open, or, equivalently, $\operatorname{pr}_1: U \times F \to U$ is open. But pr_1 is the composite $U \times F \xrightarrow{\operatorname{id} \times c} U \times * \xrightarrow{\sim} U$, where c is the map that collapses F to a point. As c is obviously open, and the product of two open maps is open, we are done.

1.4. DEFINITION. A bundle morphism $(u, f) : (E, B, p) \to (E', B', p)$ consists of maps $u : E \to E', f : B \to B'$ such that the following diagram commutes:

$$E \xrightarrow{u} E'$$

$$p \downarrow \qquad \qquad \downarrow p'$$

$$B \xrightarrow{f} B'$$

Note that u maps the fiber over $b \in B$ to the fiber over $f(b) \in B'$. Hence the restriction of u to E_b defines a map

$$u_b: E_b \to E_{f(b)}.$$

Note also that u determines f; indeed, f(b) = p'(u(x)), for any $x \in E_b$.

A morphism for which B' = B and f = id is called a *B*-morphism. As the requirement is this case is $p' \circ u = p$, or $u(E_b) \subset E_b$, we also say that $u : E \to E'$ is a fiber-preserving map. If u is injective, we say that $\xi = (E, B, p)$ is a sub-bundle of $\xi' = (E', B, p')$, and write $\xi \subset \xi'$.

A *B*-morphism $u: E \to E'$ which is a homeomorphism is called a *bundle isomorphism*; if such a morphism exists, we say the bundles $\xi = (E, B, p)$ and $\xi' = (E', B, p')$ are *equivalent*, and write $\xi \cong \xi'$. The automorphisms of a bundle ξ are also called *gauge equivalences*; they form a group, $\mathcal{G}(\xi)$, called the *gauge group* of ξ .

The following lemma is a useful criterion for bundle equivalence.

1.5. LEMMA. Let $u : E \to E'$ be a B-morphism such that for each $b \in B, u_b : E_b \to E'_b$ is a homeomorphism. If the fiber F is a locally connected, locally compact, Hausdorff space, then u is a bundle isomorphism.

PROOF. Since the restriction of u to any fiber is a bijection, u itself is a bijection. All we have to prove is that the inverse of u is continuous. It is enough to do that in a local coordinate chart.

So let $u: U \times F \to U \times F$ be a map given by $(b, x) \mapsto (b, u_b(x))$, where $u_b \in$ Homeo(F). Endow Homeo(F) with the compact-open topology. Since F is locally compact and Hausdorff, and since the map $(b, x) \mapsto u_b(x)$ is continuous, the map $\alpha: U \to$ Homeo(F), $b \mapsto u_b$ is also continuous (see [Bourbaki]). On the other hand, since F is locally connected, locally compact and Hausdorff, the group structure on Homeo(F) (given by composition of maps) is compatible with the chosen topology (see [Bourbaki]). In particular, the map β : Homeo(F) \to Homeo(F), $g \mapsto g^{-1}$ is continuous. Thus $\beta \circ \alpha: U \to$ Homeo(F), $b \mapsto u_b^{-1}$ is continuous. This implies that $u^{-1}: U \times F \to U \times F, u^{-1}(b, x) = (b, u_b^{-1}(x))$ is also continuous, and we are done. \Box

1.6. DEFINITION. A map $s: B \to E$ is called a *section* of the bundle (E, B, p) if $p \circ s = id_B$.

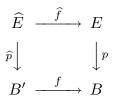
1.7. DEFINITION. A bundle $(B \times F, B, \mathrm{pr}_1)$ is called trivial. A bundle (E, B, p) is trivializable if it is equivalent to a trivial one; a B-isomorphism $(E, B, p) \xrightarrow{\sim} (B \times F, B, \mathrm{pr}_1)$ is called a trivialization.

A section of the trivial bundle $(B \times F, B, \operatorname{pr}_1)$ has the form $s : B \to B \times F, s(b) = (b, f(b))$. We thus have a bijection {sections of trivial bundle} $\longleftrightarrow \operatorname{Map}(B, F)$, given by $s \leftrightarrow f$.

1.8. DEFINITION. Let $\xi = (E, B, p)$ be a bundle, and $f : B' \to B$ a map. The *pull-back* of ξ by f is the bundle $f^*(\xi) = (\widehat{E}, B', \widehat{p})$, where $\widehat{E} = \{(b', x) \in B' \times E \mid f(b') = p(x)\}$ and \widehat{p} is the restriction of $\operatorname{pr}_1 : B' \times E \to B'$ to \widehat{E} .

If ξ has local coordinates (U, ϕ) , we may choose the local coordinates of $f^*(\xi)$ to be (U', ϕ') , where $U' = f^{-1}(U)$ and $\phi' : U' \times F \to p'^{-1}(U')$ is given by $\phi'(b', y) = (b', \phi(f(b'), y))$.

There is a canonical morphism from $f^*(\xi)$ to ξ , given by the commuting square



where \hat{f} is the restriction of $\operatorname{pr}_2: B' \times E \to E$ to \widehat{E} .

The pull-back has the following universality property: for every bundle morphism $(f', f) : (E', B', p') \to (E, B, p)$ there exists a unique B'-morphism $u : E' \to \widehat{E}$ such that $(f', f) = (\widehat{f}, f) \circ (u, \operatorname{id}_{B'})$. The map u is given by u(x) = (p'(x), f'(x)).

For each $b' \in B'$, the map $\hat{f}_{b'} : \hat{E}_{b'} \to E_{f(b')}$ is a homeomorphism. Thus, if ξ has fiber F, so does $f^*(\xi)$. The following theorem says that, under mild restrictions on F, these properties characterize pull-backs.

1.9. THEOREM. Let (f', f) be a morphism from the bundle $\xi' = (E', B', p')$ to the bundle $\xi = (E, B, p)$ such that for each $b' \in B'$, $f'_{b'} : E'_{b'} \to E_{f(b')}$ is a homeomorphism. If the fiber F of ξ is a locally connected, locally compact, Hausdorff space, then ξ' is equivalent to $f^*(\xi)$.

PROOF. By the universality property of pull-backs, there is a morphism $(u, \mathrm{id}_{B'})$ from ξ' to $f^*(\xi)$ such that $f' = \hat{f} \circ u$. In particular, $f'_{b'} = \hat{f}_{b'} \circ u_{b'}$, and so $u_{b'}$ is a homeomorphism. Thus, by Lemma 1.5., $u: E' \to \hat{E}$ is a bundle isomorphism. \Box

1.10. DEFINITION. Let $\xi = (E, B, p)$ be a bundle, A a subspace of B, and $i : A \to B$ the inclusion map. The *restriction* of ξ to A is the bundle $\xi|_A = i^*(\xi)$.

1.11. DEFINITION. The *product* of the bundles $\xi_1 = (E_1, B_1, p_1)$ and $\xi_2 = (E_2, B_2, p_2)$ is the bundle $\xi_1 \times \xi_2 = (E_1 \times E_2, B_1 \times B_2, p_1 \times p_2)$.

If ξ_i has local coordinates (U_i, ϕ_i) , we may choose the local coordinates of $\xi_1 \times \xi_2$ to be $(U_1 \times U_2, \phi)$, where ϕ is the composite $U_1 \times U_2 \xrightarrow{\phi_1 \times \phi_2} (U_1 \times F_1) \times (U_2 \times F_2) \xrightarrow{\sim} U_1 \times U_2 \times F_1 \times F_2$. Note that the fiber of the product is the product of the fibers.

1.12. DEFINITION. Let $\xi_1 = (E_1, B_1, p_1)$ and $\xi_2 = (E_2, B, p_2)$ be two bundles with the same base space. Their *Whitney sum* is the bundle $\xi_1 \oplus \xi_2 = \Delta^*(\xi_1 \times \xi_2)$, where $\Delta : B \to B \times B, \Delta(b) = (b, b)$ is the diagonal map.

Write $\xi_1 \oplus \xi_2 = (E_1 \oplus E_2, B, p_1 \oplus p_2)$. We then have the following commuting square:

$$E_1 \oplus E_2 \xrightarrow{\widehat{\Delta}} E_1 \times E_2$$

$$p_1 \oplus p_2 \downarrow \qquad \qquad \qquad \downarrow p_1 \times p_2$$

$$B \xrightarrow{\Delta} B \times B$$

Note that ξ_1 and ξ_2 are sub-bundles of $\xi_1 \oplus \xi_2$, and that $F(\xi_1) \times F(\xi_2) = F(\xi_1 \oplus \xi_2)$. Under suitable restrictions on the fibers, these properties characterize Whitney sums:

1.13. THEOREM. Let ξ_1 and ξ_2 be sub-bundles of ξ such that $F(\xi_1) \times F(\xi_2) = F(\xi)$. If $F(\xi)$ is a locally connected, locally compact, Hausdorff space, then ξ' is equivalent to $\xi_1 \oplus \xi_2$.

PROOF. From the assumption and local triviality, we get a homeomorphism u_b : $(E_1)_b \times (E_2)_b \to E_b$, for every $b \in B$. This defines a morphism $u : E_1 \oplus E_2 \to E$ by $u(b, (x_1, x_2)) = (b, u_b(x_1, x_2))$. By Lemma 1.5, u is a bundle isomorphism. \Box

Exercises

1. Show that $(f \circ g)^*(\xi) \cong g^*(f^*(\xi))$ and $\mathrm{id}^*(\xi) \cong \xi$.

2. If $\xi \cong \eta$, then $f^*(\xi) \cong f^*(\eta)$.

3. If ξ is trivial, then $f^*(\xi)$ is trivial.

4. Let $\xi = (B \times F, B, \mathrm{pr}_1)$ be a trivial bundle. Show that $\mathcal{G}(\xi) \cong \mathrm{Map}(B, \mathrm{Homeo}(F))$.

5. Show that the restriction of the compact-open topology on Homeo(\mathbb{R}^n) to $\operatorname{GL}(n,\mathbb{R})$ coincides with the restriction of the Euclidean topology on \mathbb{R}^{n^2} to $\operatorname{GL}(n,\mathbb{R})$.

6. Let $X = \{0\} \cup \{2^n\}_{n \in \mathbb{Z}}$ and consider the space Homeo(X), endowed with the compact-open topology. Show that β : Homeo(X) \rightarrow Homeo(X), $\beta(g) = g^{-1}$ is not continuous.

7. Consider the space Homeo(\mathbb{R}^2), endowed with the topology of pointwise convergence. Show that the map Homeo(\mathbb{R}^2) × Homeo(\mathbb{R}^2) → Homeo(\mathbb{R}^2), $(u, v) \mapsto u \circ v$ is *not* continuous.