NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

Prof. Alex Suciu

Spring 2003

MTH 3481—TOPOLOGY 3 FINAL EXAM

This is a take-home exam, due Friday, June 6 (as hard copy in my mailbox), or Sunday, June 8 (as pdf file by email). Give complete proofs or justifications for each statement you make. Show all your work.

- 1. Let M^n be a compact, connected, *n*-dimensional manifold (possibly non-orientable).
 - (a) If n is odd, show that $\chi(M) = 0$.
 - (b) If n is even, and M is the boundary of a compact, connected manifold W^{n+1} , show that $\chi(M)$ is even.
- 2. Let M^3 be a compact, connected 3-manifold.
 - (a) Assume M is orientable. What are the possible homology groups of M? Be as specific as possible.
 - (b) Assume M is non-orientable. Show that $H_1(M)$ is infinite. (Hint: Use problem 1(a).) What else can you say about the possible homology groups of M? Be as specific as possible.
- 3. Let M^n be a compact, connected, orientable, *n*-dimensional manifold. Let $f: M \to M$ be a map such that $f_*: H_n(M; \mathbb{Z}) \to H_n(M; \mathbb{Z})$ is an isomorphism. Show that the induced homomorphisms

$$f_*: H_i(M;G) \to H_i(M;G)$$
 and $f^*: H^i(M;G) \to H^i(M;G)$

are isomorphisms, for all $i \ge 0$, and all abelian groups G.

- 4. Let M^n be a compact, connected, orientable, *n*-dimensional manifold, and let $N^{n-1} \subset M^n$ a codimension-one compact, connected submanifold.
 - (a) If $H_1(M;\mathbb{Z}) = 0$, then $M \setminus N$ has exactly two (path) components.
 - (b) Is the conclusion true if $H_1(M; \mathbb{Z}) \neq 0$?