MTH3414 — FALL 2000 BUNDLES AND CHARACTERISTIC CLASSES

PROF. A. SUCIU

Homework 3

1. Let ξ be a principal G-bundle over a paracompact space B, with classifying map $f : B \to BG$. Let H be a closed subgroup of G, and $i : H \to G$ the inclusion. Show:

 ξ reduces to $H \iff \exists g : B \to BH$ such that $Bi \circ g \sim f$.

2. Let G be a connected Lie group. Show that:

$$k_G(S^n) \cong \pi_{n-1}(G)$$
.

Describe the isomorphism explicitly.

- 3. Give an example of an orientable k-plane bundle over S^n with zero Euler class but with no non-zero section. (*Hint:* Try k = 3, n = 4, and use the preceding exercise.)
- 4. Suppose \mathbb{CP}^n is differentiably embedded in \mathbb{R}^k . Find a (good!) lower bound for k.
- 5. (a) If ℝPⁿ embeds in ℝⁿ⁺¹, then n = 2^r 1.
 (b) If ℝPⁿ immerses in ℝⁿ⁺¹, then n = 2^r 1 or n = 2^r 2.
 (c) If n = 2^r, there is no immersion of ℝPⁿ in ℝ²ⁿ⁻², and no embedding in ℝ²ⁿ⁻¹.
- 6. (a) Let ξ be a complex vector bundle and ξ* its dual. Show that c_i(ξ*) = (−1)ⁱc_i(ξ).
 (b) Let λ₁ and λ₂ be two complex line bundles. Show that c₁(λ₁ ⊗ λ₂) = c₁(λ₁) + c₁(λ₂).
- 7. Consider the Hopf fibration $\xi = (S^1 \to S^{2n+1} \to \mathbb{CP}^n)$. Identify the Euler class $e(\xi)$, write down the Gysin sequence of ξ , and use it to rederive the structure of $H^*(\mathbb{CP}^n;\mathbb{Z})$.
- 8. Let X_d be a nonsingular hypersurface in \mathbb{CP}^3 of degree d. Compute the Chern numbers $c_1^2(X_d)$ and $c_2(X_d)$.
- 9. Let $F(\mathbb{C}^n)$ be the manifold of complete flags in \mathbb{C}^n . Show that:

$$H^*(F(\mathbb{C}^n);\mathbb{Z}) \cong \mathbb{Z}[x_1,\ldots,x_n] \left/ \left(\prod_{i=1}^n (1+x_i) = 1\right)\right.$$