MTH3414 — FALL 2000 BUNDLES AND CHARACTERISTIC CLASSES

PROF. A. SUCIU

Homework 2

1. Let ξ be a fiber bundle with structure group G and transition function $\{g_{i,j}\}_{i,j\in I}$, defined with respect to an open cover $\{U_i\}_{i\in I}$ of the base space. Prove:

 ξ trivial $\iff \exists r_i : U_i \to G$ with $g_{i,j}(b) = r_i(b)^{-1}r_j(b)$ for $b \in U_i \cap U_j$.

- 2. Let ξ be a k-plane bundle with transition functions $\{\phi_{ij}\}$. Show:
 - (a) If k = 1, then $\xi^{\otimes m} := \xi \otimes \cdots \otimes \xi$ (*m* factors) has transition functions $\{\phi_{ij}^m\}$.
 - (b) The determinant bundle det $\xi := \wedge^k \xi$ has transition functions $\{\det \phi_{ij}\}.$
 - (c) det(T^{*}(G_k(\mathbb{R}^n))) \cong (det $\gamma_k(\mathbb{R}^n))^{\otimes n}$.
- 3. For the canonical principal bundles $p: S^n \to \mathbb{RP}^n$ and $p: S^{2n+1} \to \mathbb{CP}^n$ determine an atlas and compute the transition functions.
- 4. Let ξ_n be the principal \mathbb{Z}_n -bundle $p_n : S^1 \to S^1$, where $p_n(z) = z^n$. Consider the associated \mathbb{Z}_n -bundle $\eta_n = \xi_n[S^1]$, where $\mathbb{Z}_n \subset S^1$ acts on S^1 by left-translation. Show that η_n is not trivial as a \mathbb{Z}_n -bundle, but it is trivial as a (principal) S^1 -bundle.
- 5. Consider the \mathbb{Z}_n -action on S^3 given by $(z_1, z_2) \mapsto (\zeta z_1, \zeta z_2)$, where $\zeta = e^{2\pi i/n}$. Let L_n be the orbit space.
 - (a) Define a principal S^1 -bundle $L_n \to S^2$.
 - (b) What is the clutching function of this bundle?
 - (c) Show that $L_1 = S^3$ and $L_2 = SO(3)$.