MTH3414 — FALL 2000 BUNDLES AND CHARACTERISTIC CLASSES

PROF. A. SUCIU

Homework 1

- 1. Let ξ^k be a k-plane bundle over a compact base space. Show: $\exists \eta^n$ such that $\xi^k \oplus \eta^n \cong \epsilon^{k+n}$.
- 2. Let ξ^k be a k-plane bundle over an n-dimensional CW-complex, k > n. Show: ξ stably trivial $\implies \xi$ trivial, i.e.: if $\xi^k \oplus \epsilon^r \cong \epsilon^{k+r}$ then $\xi^k \cong \epsilon^k$.
- 3. Let M^n be a smooth submanifold of S^{n+k} , n < k. Show: TM is stably trivial $\iff \nu_M$ is trivial.
- 4. Let $G_k(\mathbb{R}^n)$ be the Grassmannian of k-planes in \mathbb{R}^n .
 - (a) Show: $TG_k(\mathbb{R}^n) \oplus (\gamma^k(\mathbb{R}^n) \otimes \gamma^k(\mathbb{R}^n)) \cong n\gamma^k(\mathbb{R}^n)$
 - (b) Find a classifying map for \mathbb{TRP}^n . More generally, for $\mathbb{TG}_k(\mathbb{R}^n)$.
- 5. Fix a bijection $e : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and let $\mu : \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ be defined by $\mu((x_i)_i, (y_j)_j) = ((x_i y_j)_{e(i,j)})$. Show:
 - (a) μ induces a map $\mu: G_k(\mathbb{R}^\infty) \times G_l(\mathbb{R}^\infty) \to G_{kl}(\mathbb{R}^\infty)$ (called the Segre map).
 - (b) If ξ, η have classifying maps f_{ξ} and f_{η} , then $\xi \times \eta$ has classifying map $\mu \circ (f_{\xi} \times f_{\eta})$.
- 6. Let $\widetilde{G}_k(\mathbb{R}^n)$ be the Grasmannian manifold of *oriented* k-planes in \mathbb{R}^n .
 - (a) There is a double covering $\mathbb{Z}_2 \to \widetilde{G}_k(\mathbb{R}^n) \to G_k(\mathbb{R}^n)$.
 - (b) There is a principal bundle $SO(k) \times SO(n-k) \to SO(n) \to \widetilde{G}_k(\mathbb{R}^n)$.
 - (c) Interpret the covering map $G_k(\mathbb{R}^n) \to G_k(\mathbb{R}^n)$ from (a) as a map of homogeneous spaces, $SO(n)/SO(k) \times SO(n-k) \to O(n)/O(k) \times O(n-k)$.
 - (d) Show that $\widetilde{G}_2(\mathbb{R}^4)$ is diffeomorphic to $S^2 \times S^2$.
 - (e) What is the involution on $S^2 \times S^2$ that corresponds to the non-trivial covering map $\widetilde{G}_2(\mathbb{R}^4) \to \widetilde{G}_2(\mathbb{R}^4)$?
- 7. Let $p: E \to B$ be a real vector bundle of rank k. Let

$$F(E) = \{(b, \mathbf{f}) \mid b \in B \text{ and } \mathbf{f} = (f_1, \dots, f_n) \text{ is a basis for } p^{-1}(b)\}$$

be the space of frames of E, and let $q: F(E) \to B$ be given by $q(b, \mathbf{f}) = b$. Show that:

- (a) $q: F(E) \to B$ is a principal $GL(n, \mathbb{R})$ -bundle.
- (b) The given vector bundle is associated to its frame bundle via the natural action of $\operatorname{GL}(n,\mathbb{R})$ on \mathbb{R}^n , i.e., $E = F(E) \times_{\operatorname{GL}(n,\mathbb{R})} \mathbb{R}^n$.