Geometric interpretation of some linear transformations

1. Rotation-dilations

To interpret the linear transformation

$$
T(\vec{x})=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] \vec{x}
$$

geometrically, write the vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ in polar coordinates: $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}r \cos \alpha \\ r \sin \alpha\end{array}\right]$. Then the matrix of T can be written as

$$
A=r\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] .
$$

Thus, T is counterclockwise rotation through the angle α, followed by a dilation by the factor r.

2. Projection-dilations

To interpret the linear transformation

$$
T(\vec{x})=\left[\begin{array}{cc}
a & b \\
b & b^{2} / a
\end{array}\right] \vec{x}
$$

geometrically, write $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}r \cos \alpha \\ r \sin \alpha\end{array}\right]$. Then the matrix of T can be written as

$$
A=\frac{r}{\cos \alpha}\left[\begin{array}{cc}
\cos ^{2} \alpha & \sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha & \sin ^{2} \alpha
\end{array}\right] .
$$

Thus, T is orthogonal projection onto the line L making angle α with the x-axis, followed by a dilation by the factor $\frac{r}{\cos \alpha}$.

3. Reflection-dilations

To interpret the linear transformation

$$
T(\vec{x})=\left[\begin{array}{rr}
a & b \\
b & -a
\end{array}\right] \vec{x}
$$

geometrically, write $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}r \cos 2 \alpha \\ r \sin 2 \alpha\end{array}\right]$. Then the matrix of T can be written as

$$
A=r\left[\begin{array}{rr}
\cos 2 \alpha & \sin 2 \alpha \\
\sin 2 \alpha & -\cos 2 \alpha
\end{array}\right]
$$

Thus, T is reflection in the line L making angle α with the x-axis, followed by a dilation by the factor r.

