MTH 1230

Prof. A. Suciu LINEAR ALGEBRA

SAMPLE QUIZ 5

1. Let $A = \begin{bmatrix} 1 & 3 & 4 \\ 4 & 5 & 2 \\ -1 & 3 & 8 \end{bmatrix}$.

(a) What is ker A, and what is its orthogonal complement?

(b) What is ker A^{\top} , and what is its orthogonal complement?

2. Let
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$
.

(a) What is ker A, and what is its orthogonal complement?

- (b) What is ker A^{\top} , and what is its orthogonal complement?
- **3.** Find the least squares solution of the inconsistent system $A\mathbf{x} = \mathbf{b}$ for $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$.

4. Let
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ -1 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$.

(a) Find the least squares solution $\left[\frac{\overline{x}}{\overline{y}}\right]$ of the inconsistent system $A \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \mathbf{b}$.

(b) Use your answer to part (a) to find the projection of **b** onto CS(A), the column space of A.

5. Find the equation of the least-squares line that fits the following data points:

x	1	2	4	5
y	0	1	2	3

Sketch the resulting line. What is the predicted value of y at x = 6, based on this model?

6. A company gathers the following data:

Year	1991	1992	1993	1994	1995	1996	1997
Annual Sales	1.2	2.8	3.6	4.5	6	7.5	8.2
(in millions of dollars)							

Represent the years $1991, \ldots, 1997$ as -3, -2, -1, 0, 1, 2, 3, respectively, and let x denote the year. Let y denote the annual sales (in millions of dollars).

- (a) Find the least squares line relating x and y.
- (b) Use the equation obtained in part (a) to estimate the annual sales for the year 2000.

- 7. Let $A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Find the eigenvalues of A.
 - (c) Find a basis for each eigenspace of A.
 - (d) Find a diagonal matrix Λ and an invertible matrix S such that $A = S \cdot \Lambda \cdot S^{-1}$.
- 8. Let A be a 3×3 matrix, with eigenvalues $\lambda_1 = -2$, $\lambda_2 = 0$, $\lambda_3 = 5$.
 - (a) Compute tr(A) and det(A).
 - (b) Is A invertible? Explain your answer.
 - (c) Is A diagonalizable? Explain your answer.
 - (d) Compute $tr(A^3)$ and $det(A^3)$.

9. Let
$$A = \begin{bmatrix} 4 & -7 & 0 \\ 2 & -5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

- (a) Find the eigenvalues of A.
- (b) Find a basis for each eigenspace of A.
- (c) Find a diagonal matrix Λ and an invertible matrix S such that $A = S \cdot \Lambda \cdot S^{-1}$.
- 10. A 2 × 2 matrix A has first row [-2 5] and eigenvalues λ₁ = -1 and λ₂ = 3.
 (a) Find A.
 - (b) What are the eigenvalues of A^{-1} ?
 - (c) Compute $det(A^{-1} + I)$, where I is the identity 2×2 matrix. Explain your result.
- **11.** A 4 × 4 matrix has eigenvalues $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3, \lambda_4 = 4$.
 - (a) Find the eigenvalues of A^2 .
 - (b) Find the trace of A^2 .
 - (c) Find the determinant of A^2 .

12. Let
$$A = \begin{bmatrix} -6 & 11 \\ 1 & 4 \end{bmatrix}$$
.

- (a) Find the characteristic polynomial of A.
- (b) Find the eigenvalues of A.
- (c) Find a basis for each eigenspace of A.
- (d) Find a diagonal matrix Λ and an invertible matrix S such that $A = S \cdot \Lambda \cdot S^{-1}$.
- **13.** Let A be a 4×4 matrix, with eigenvalues $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 2$, $\lambda_4 = 3$.
 - (a) Compute tr(A) and det(A).
 - (b) Is A invertible? Always? Sometimes? Never? Explain your answer.
 - (c) Is A diagonalizable? Always? Sometimes? Never? Explain your answer.
 - (d) Compute $tr(A^2)$ and $det(A^2)$.