SAMPLE QUIZ 3

1. Let $A=\left[\begin{array}{cccc}2 & 1 & 1 & 0 \\ 4 & 2 & 2 & 0 \\ -6 & -3 & 0 & 1 \\ 2 & 1 & -2 & 0\end{array}\right]$.
(a) Find a basis for im A.
(b) Find a basis for $\operatorname{ker} A$.
(c) Find rank A.
2. Let $A=\left[\begin{array}{ccc}1 & 3 & 4 \\ 4 & 5 & 2 \\ -1 & 3 & 8\end{array}\right]$.
(a) Determine whether the column vectors of A are dependent or independent. If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
(b) Find $\operatorname{ker} A$ and $\operatorname{im} A$.
(c) Does the equation $A \cdot \vec{x}=\vec{b}$ have a solution for every choice of \vec{b} in \mathbb{R}^{3} ? Explain your answer.
3. Are the following vectors independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.

$$
\vec{v}_{1}=\left[\begin{array}{l}
2 \\
2 \\
6
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}
-5 \\
7 \\
-3
\end{array}\right]
$$

4. In each of the following, a subset S of $V=\mathbb{R}^{3}$ is given. Circle one answer:
(a) $S=\{(t, 2 t, 3 t) \mid t$ is a real number $\}$

S is closed under addition:	YES	NO	MAYBE
S is closed under scalar multiplication:	YES	NO	MAYBE
S is a vector subspace of $V:$	YES	NO	MAYBE

(b) $S=\{(t, 2 t, 3 t) \mid t$ is a positive real number $\}$
S is closed under addition: YES NO MAYBE
S is closed under scalar multiplication: YES NO MAYBE
S is a vector subspace of $V: \quad$ YES NO MAYBE
(c) $S=\{(t, 2 t, 3 t) \mid t$ is an integer $\}$
S is closed under addition: YES NO MAYBE
S is closed under scalar multiplication: YES NO MAYBE
S is a vector subspace of $V: \quad$ YES NO MAYBE
(d) $S=\{(t+1,2 t, 3 t-1) \mid t$ is a real number $\}$
S is closed under addition: YES NO MAYBE
S is closed under scalar multiplication: YES NO MAYBE
S is a vector subspace of $V: \quad$ YES NO MAYBE

