1. Let
$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 2 & 2 & 0 \\ -6 & -3 & 0 & 1 \\ 2 & 1 & -2 & 0 \end{bmatrix}$$

(a) Find a basis for im A.
(b) Find a basis for ker A.
(c) Find rank A.
 $\begin{bmatrix} 1 & 3 & 4 \end{bmatrix}$

2. Let $A = \begin{bmatrix} 1 & 3 & 4 \\ 4 & 5 & 2 \\ -1 & 3 & 8 \end{bmatrix}$.

- (a) Determine whether the column vectors of A are dependent or independent. If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
- (b) Find ker A and im A.
- (c) Does the equation $A \cdot \vec{x} = \vec{b}$ have a solution for every choice of \vec{b} in \mathbb{R}^3 ? Explain your answer.
- **3.** Are the following vectors independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.

$\vec{v}_1 = \begin{bmatrix} 2\\2\\6 \end{bmatrix} \qquad \vec{v}_2 = \begin{bmatrix} 3\\-1\\5 \end{bmatrix} \qquad \vec{v}_3 = \begin{bmatrix} -5\\7\\-5 \end{bmatrix}$
--

4. In each of the following, a subset S of $V = \mathbb{R}^3$ is given. Circle one answer:

(a) $S = \{(t, 2t, 3t) \mid t \text{ is a real number}\}$ S is closed under addition: S is closed under scalar multiplication: S is a vector subspace of V:	YES YES YES	NO NO NO	MAYBE MAYBE MAYBE
(b) $S = \{(t, 2t, 3t) \mid t \text{ is a positive real number} S$ is closed under addition: S is closed under scalar multiplication: S is a vector subspace of V :	ÝES	NO NO NO	MAYBE MAYBE MAYBE
(c) $S = \{(t, 2t, 3t) \mid t \text{ is an integer}\}$ S is closed under addition: S is closed under scalar multiplication: S is a vector subspace of V :	YES YES YES	NO NO NO	MAYBE MAYBE MAYBE
(d) $S = \{(t+1, 2t, 3t-1) \mid t \text{ is a real number} S \text{ is closed under addition:} S \text{ is closed under scalar multiplication:} S \text{ is a vector subspace of } V$:	er} YES YES YES	NO NO NO	MAYBE MAYBE MAYBE