Prof. A. Suciu LINEAR ALGEBRA QUIZ 5

- **1.** 14 points Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$.
 - (a) Find a basis for $\ker A$.

(b) Find a basis for $(\ker A)^{\perp}$.

(c) Find a basis for $\ker A^{\top}$.

(d) Find a basis for $(\ker A^{\top})^{\perp}$.

(e) Which one of the above four linear subspaces— $\ker A$, $(\ker A)^{\perp}$, $\ker A^{\top}$, $(\ker A^{\top})^{\perp}$ —equals im A, and which one equals im A^{\top} ?

(f) What is the area of the parallelogram spanned by the column vectors of $5I_2 - A$?

2. 10 points A company gathers the following data:

Year	1995	1996	1997	1998
Annual Sales (in millions of dollars)	2.0	2.5	3.2	4.1

Represent the years 1995, 1996, 1997, 1998 as 0, 1, 2, 3, respectively, and let x denote the year. Let y denote the annual sales (in millions of dollars).

(a) Find the least squares line relating x and y.

(b) Use the equation obtained in part (a) to estimate the annual sales for the year 2000.

- **3.** 6 points Let A and B be two 3×3 matrices, with det A = -2 and det B = 0.
 - (a) Is A invertible? If yes, compute $\det{(A^{-1})}$. If not, say so.
 - (b) Is B invertible? If yes, compute $\det(B^{-1})$. If not, say so.
 - (c) Compute: det(4A) =
 - (d) Compute: $\det(A^4) =$