1. 14 points Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$.
(a) Find a basis for $\operatorname{ker} A$.
(b) Find a basis for $(\operatorname{ker} A)^{\perp}$.
(c) Find a basis for $\operatorname{ker} A^{\top}$.
(d) Find a basis for $\left(\operatorname{ker} A^{\top}\right)^{\perp}$.
(e) Which one of the above four linear subspaces- $\operatorname{ker} A,(\operatorname{ker} A)^{\perp}, \operatorname{ker} A^{\top},\left(\operatorname{ker} A^{\top}\right)^{\perp}-$ equals im A, and which one equals im A^{\top} ?
(f) What is the area of the parallelogram spanned by the column vectors of $5 I_{2}-A$?
2. 10 points A company gathers the following data:

Year	1995	1996	1997	1998
Annual Sales (in millions of dollars)	2.0	2.5	3.2	4.1

Represent the years $1995,1996,1997,1998$ as $0,1,2,3$, respectively, and let x denote the year. Let y denote the annual sales (in millions of dollars).
(a) Find the least squares line relating x and y.
(b) Use the equation obtained in part (a) to estimate the annual sales for the year 2000.
3. 6 points Let A and B be two 3×3 matrices, with $\operatorname{det} A=-2$ and $\operatorname{det} B=0$.
(a) Is A invertible? If yes, compute $\operatorname{det}\left(A^{-1}\right)$. If not, say so.
(b) Is B invertible? If yes, compute $\operatorname{det}\left(B^{-1}\right)$. If not, say so.
(c) Compute: $\operatorname{det}(4 A)=$
(d) Compute: $\operatorname{det}\left(A^{4}\right)=$

