Prof. A. Suciu
LINEAR ALGEBRA

1. 10 points Let A be an orthogonal $n \times n$ matrix (recall this means that the columns of A are orthonormal), and let A^{\top} be its transpose.
(a) Find:

$$
\begin{aligned}
& A A^{\top}= \\
& A^{\top} A=
\end{aligned}
$$

(b) Find:

$$
\begin{aligned}
& \operatorname{dim}(\operatorname{ker} A)= \\
& \operatorname{dim}(\operatorname{im} A)=
\end{aligned}
$$

(c) Is A^{\top} also orthogonal? Explain your answer.
(d) Are the rows of A orthonormal? Explain your answer.
(e) The $Q R$-factorization of A is given by:

$$
\begin{aligned}
& Q= \\
& R=
\end{aligned}
$$

2. 6 points Find all orthogonal matrices of the form

$$
A=\left[\begin{array}{rrr}
\frac{\sqrt{2}}{\sqrt{3}} & \frac{1}{\sqrt{3}} & a \\
-\frac{\sqrt{2}}{2 \sqrt{3}} & \frac{1}{\sqrt{3}} & b \\
\frac{\sqrt{2}}{2 \sqrt{3}} & -\frac{1}{\sqrt{3}} & c
\end{array}\right]
$$

3. 14 pts Let $\vec{v}_{1}=\left[\begin{array}{c}5 \\ 12\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}4 \\ -3\end{array}\right]$.
(a) Find the lengths of \vec{v}_{1} and \vec{v}_{2}, and compute the dot product $\vec{v}_{1} \cdot \vec{v}_{2}$.
(b) Find unit vectors in the direction of \vec{v}_{1} and \vec{v}_{2}, respectively.
(c) Find the angle between \vec{v}_{1} and \vec{v}_{2}.
(d) Find the projection of \vec{v}_{2} onto the subspace of \mathbb{R}^{2} spanned by \vec{v}_{1}.
(e) Let $A=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]$. Use the Gram-Schmidt process to find the $Q R$-factorization of A.
