1. 10 points Let A be an orthogonal $n \times n$ matrix (recall this means that the columns of A are orthonormal), and let A^{\top} be its transpose.

(a) Find:

 $AA^{\top} =$

 $A^{\top}A =$

(b) Find:

 $\dim(\ker A) =$

 $\dim(\operatorname{im} A) =$

(c) Is A^{\top} also orthogonal? Explain your answer.

(d) Are the rows of A orthonormal? Explain your answer.

(e) The QR-factorization of A is given by:

$$Q =$$

R =

$$A = \begin{bmatrix} \frac{\sqrt{2}}{\sqrt{3}} & \frac{1}{\sqrt{3}} & a \\ -\frac{\sqrt{2}}{2\sqrt{3}} & \frac{1}{\sqrt{3}} & b \\ \frac{\sqrt{2}}{2\sqrt{3}} & -\frac{1}{\sqrt{3}} & c \end{bmatrix}$$

Quiz 4

- **3.** 14 pts Let $\vec{v}_1 = \begin{bmatrix} 5\\12 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 4\\-3 \end{bmatrix}$.
 - (a) Find the lengths of \vec{v}_1 and \vec{v}_2 , and compute the dot product $\vec{v}_1 \cdot \vec{v}_2$.

(b) Find unit vectors in the direction of \vec{v}_1 and \vec{v}_2 , respectively.

(c) Find the angle between \vec{v}_1 and \vec{v}_2 .

(d) Find the projection of \vec{v}_2 onto the subspace of \mathbb{R}^2 spanned by \vec{v}_1 .

(e) Let $A = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix}$. Use the Gram-Schmidt process to find the *QR*-factorization of *A*.