# Prof. A. Suciu <br> LINEAR ALGEBRA <br> QUIZ 2 

Spring 1999

1. 10 points Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 7 & 8\end{array}\right]$.
(a) Use Gauss-Jordan elimination to compute the inverse of $A$.
(b) What is the rank of $A$ ?
(c) Use the answer in part (a) to solve the system $A \vec{x}=\vec{b}$, where $\vec{b}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$.
2. 8 points Let

$$
A=\left[\begin{array}{cc}
5 & -1 \\
2 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
-1 & 4
\end{array}\right], \quad C=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 3
\end{array}\right] .
$$

Decide whether the following products are defined or not. If they are, compute them:

$$
A \cdot B, \quad B \cdot A, \quad A \cdot C, \quad C \cdot A, \quad B \cdot C, \quad C \cdot B
$$

3. 4 points For two invertible $n \times n$ matrices $A$ and $B$, determine which of the following formulas are necessarily true:
(a) $(A-B)^{2}=A^{2}-2 A B+B^{2}$.
(b) $\left(I_{n}+A\right)\left(I_{n}-A+A^{2}\right)=I_{n}+A^{3}$.
(c) $\left(A^{-1} B^{-1} A\right)^{-1}=A^{-1} B A$.
(d) $A B A^{-1} B^{-1}=I_{n}$.
4. 8 points Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T(\vec{x})=\left[\begin{array}{cc}
4 & 3 \\
3 & -4
\end{array}\right] \vec{x} .
$$

(a) Sketch the image of the unit square under this transformation.
(b) Explain how $T$ can be interpreted as a reflection followed by a dilation. What is the angle of reflection, and what is the factor of dilation?

## Geometric interpretation of some linear transformations

## 1. Rotation-dilations

To interpret the linear transformation

$$
T(\vec{x})=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] \vec{x}
$$

geometrically, write the vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ in polar coordinates: $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}r \cos \alpha \\ r \sin \alpha\end{array}\right]$. Then the matrix of $T$ can be written as

$$
A=r\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] .
$$

Thus, $T$ is counterclockwise rotation through the angle $\alpha$, followed by a dilation by the factor $r$.

## 2. Projection-dilations

To interpret the linear transformation

$$
T(\vec{x})=\left[\begin{array}{cc}
a & b \\
b & b^{2} / a
\end{array}\right] \vec{x}
$$

geometrically, write $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}r \cos \alpha \\ r \sin \alpha\end{array}\right]$. Then the matrix of $T$ can be written as

$$
A=\frac{r}{\cos \alpha}\left[\begin{array}{cc}
\cos ^{2} \alpha & \sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha & \sin ^{2} \alpha
\end{array}\right]
$$

Thus, $T$ is orthogonal projection onto the line $L$ making angle $\alpha$ with the $x$-axis, followed by a dilation by the factor $\frac{r}{\cos \alpha}$.

## 3. Reflection-dilations

To interpret the linear transformation

$$
T(\vec{x})=\left[\begin{array}{rr}
a & b \\
b & -a
\end{array}\right] \vec{x}
$$

geometrically, write $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}r \cos 2 \alpha \\ r \sin 2 \alpha\end{array}\right]$. Then the matrix of $T$ can be written as

$$
A=r\left[\begin{array}{rr}
\cos 2 \alpha & \sin 2 \alpha \\
\sin 2 \alpha & -\cos 2 \alpha
\end{array}\right]
$$

Thus, $T$ is reflection in the line $L$ making angle $\alpha$ with the $x$-axis, followed by a dilation by the factor $r$.

