1. 10 points Consider the matrix $A=\left[\begin{array}{ccc}-1 & 3 & 2 \\ 2 & 4 & 1 \\ 4 & 3 & a\end{array}\right]$.
(a) For which values of a is A invertible?
(b) Find the inverse of A when $a=2$.
(c) Use the answer in part (b) to solve the system $A \vec{x}=\vec{b}$, where $a=2$ and $\vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
2. 8 points Let

$$
A=\left[\begin{array}{cc}
2 & -4 \\
1 & 5 \\
3 & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
2 \\
-1
\end{array}\right], \quad C=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 3
\end{array}\right]
$$

Decide whether the following products are defined or not. If they are, compute them:

$$
A \cdot B, \quad B \cdot A, \quad A \cdot C, \quad C \cdot A, \quad B \cdot C, \quad C \cdot B
$$

3. 4 points For three invertible $n \times n$ matrices A, B, and C, determine which of the following formulas are necessarily true:
(a) $\left(A B^{3} A^{-1}\right)^{-1}=A B^{-3} A^{-1}$.
(b) $A\left(2 B-3 C^{-1}\right)=2 A B-3 A C^{-1}$.
(c) $C B A A^{-1} C^{-1} B^{-1}=I_{n}$.
(d) $(A+B+C)^{2}=A^{2}+B^{2}+C^{2}+2 A B+2 A C+2 B C$.
4. 8 points Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T(\vec{x})=\left[\begin{array}{ll}
1 & 3 \\
3 & 9
\end{array}\right] \vec{x}
$$

(a) Sketch the image of the unit square under this transformation. (Indicate the coordinates of the vertices of the image, and shade the image.)
(b) Explain how T can be interpreted as a projection on a line L, followed by a dilation. What is the angle made by L with the x-axis, and what is the factor of dilation?

Geometric interpretation of some linear transformations

1. Rotation-dilations

To interpret the linear transformation

$$
T(\vec{x})=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] \vec{x}
$$

geometrically, write the vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ in polar coordinates: $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}r \cos \alpha \\ r \sin \alpha\end{array}\right]$. Then the matrix of T can be written as

$$
A=r\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] .
$$

Thus, T is counterclockwise rotation through the angle α, followed by a dilation by the factor r.

2. Projection-dilations

To interpret the linear transformation

$$
T(\vec{x})=\left[\begin{array}{cc}
a & b \\
b & b^{2} / a
\end{array}\right] \vec{x}
$$

geometrically, write $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}r \cos \alpha \\ r \sin \alpha\end{array}\right]$. Then the matrix of T can be written as

$$
A=\frac{r}{\cos \alpha}\left[\begin{array}{cc}
\cos ^{2} \alpha & \sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha & \sin ^{2} \alpha
\end{array}\right]
$$

Thus, T is orthogonal projection onto the line L making angle α with the x-axis, followed by a dilation by the factor $\frac{r}{\cos \alpha}$.

3. Reflection-dilations

To interpret the linear transformation

$$
T(\vec{x})=\left[\begin{array}{rr}
a & b \\
b & -a
\end{array}\right] \vec{x}
$$

geometrically, write $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}r \cos 2 \alpha \\ r \sin 2 \alpha\end{array}\right]$. Then the matrix of T can be written as

$$
A=r\left[\begin{array}{rr}
\cos 2 \alpha & \sin 2 \alpha \\
\sin 2 \alpha & -\cos 2 \alpha
\end{array}\right]
$$

Thus, T is reflection in the line L making angle α with the x-axis, followed by a dilation by the factor r.

