1	2	3	4	5	6	7	8	Σ

Name: \qquad

NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

MTH 1230
Prof. A. Suciu
Spring 1999

FINAL EXAM

Instructions: Put your name in the blanks above. Put your final answers to each question in the designated spaces - you may lose credit if you don't. Calculators are permitted. A single sheet of formulas is allowed. Show your work. If there is not enough room to show your work, use the back of the preceding page. Good luck!

1. 12 points Consider the vectors

$$
\vec{v}_{1}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
$$

(a) Are the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ linearly independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
(b) Write the vector $\vec{b}=\left[\begin{array}{r}1 \\ -7 \\ 5\end{array}\right]$ as a linear combination of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
2. 14 points The matrix $A=\left[\begin{array}{rrrrr}1 & 2 & 3 & 1 & 0 \\ 2 & 3 & 5 & 2 & 1 \\ 3 & 5 & 8 & 3 & 1 \\ 4 & 7 & 11 & 4 & 1\end{array}\right]$ has the matrix $E=\left[\begin{array}{rrrrr}1 & 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ as its row-reduced echelon form.
(a) Find a basis for the image of A.
(b) Find a basis for the kernel of A.
(c) Compute:

- $\operatorname{rank} A=$
- $\operatorname{dim}(\operatorname{im} A)=$
- $\operatorname{dim}(\operatorname{ker} A)=$
- $\operatorname{dim}\left(\operatorname{im} A^{\top}\right)=$
- $\operatorname{dim}\left(\operatorname{ker} A^{\top}\right)=$

3. 12 points In each of the following cases, determine whether or not the given subset V of $\overline{\mathbb{R}^{n}}$ is a vector subspace. If it is, identify it as either the kernel or the image of a matrix A, and write down the matrix A. If it is not a vector subspace, explain why not.
(a) $V=\left\{\vec{x} \in \mathbb{R}^{3} \left\lvert\, \vec{x}=t\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+s\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right]\right.\right.$, where t and s take all real values $\}$
(b) $V=\left\{\vec{x} \in \mathbb{R}^{3} \left\lvert\, \vec{x}=t\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right]\right.\right.$, where t takes all real values $\}$
(c) $V=\left\{\vec{x} \in \mathbb{R}^{4} \mid x_{1}+x_{2}-x_{3} x_{4}=0\right\}$
(d) $V=\left\{\vec{x} \in \mathbb{R}^{4} \mid x_{1}+x_{2}+3 x_{3}=0, \quad x_{3}-x_{4}=0, \quad 2 x_{1}+x_{3}+x_{4}=0\right\}$
4. 14 pts Let $A=\left[\begin{array}{rr}-2 & -1 \\ 3 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}1 \\ 3 \\ 2 \\ 0\end{array}\right]$.
(a) Find the least squares solution $\left[\begin{array}{l}x^{*} \\ y^{*}\end{array}\right]$ of the inconsistent system $A \cdot\left[\begin{array}{l}x^{*} \\ y^{*}\end{array}\right]=\vec{b}$.
(b) Find the 4×4 matrix associated with the projection of \mathbb{R}^{4} onto the subspace im A.
(c) Find the projection of \vec{b} onto im A.
5. 14 pts Consider the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

and let $A=\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]$.
(a) Apply the Gram-Schmidt process to the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, and write the result in the form $A=Q R$.
(b) Compute the volume of the parallelepiped spanned by the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
6. 10 pts Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which is a counterclockwise rotation of 30° about the y-axis, followed by a dilation by a factor of 6 .
(a) Find the matrix A corresponding to T.
(b) What is the image of the vector $\left[\begin{array}{l}5 \\ 4 \\ 3\end{array}\right]$ under the map T ?
7. 10 points $\mathrm{A} 5 \times 5$ matrix A has eigenvalues $\lambda_{1}=-1, \lambda_{2}=2, \lambda_{3}=2, \lambda_{4}=3, \lambda_{5}=4$.
(a) Compute: $\operatorname{tr} A=$
(b) Compute: $\operatorname{det} A=$
(c) Compute: $\operatorname{det}\left(3 I_{5}-A\right)=$
(d) Is A invertible? Why, or why not?
(e) Is A orthogonal? Why, or why not?
8. 14 pts Let $A=\left[\begin{array}{rrr}4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 9 & -5\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.

