|--|

NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

MTH 1230

Prof. A. Suciu

Spring 1999

FINAL EXAM

Instructions: Put your name in the blanks above. Put your final answers to each question in the designated spaces—you may lose credit if you don't. Calculators are permitted. A single sheet of formulas is allowed. **Show your work.** If there is not enough room to show your work, use the back of the preceding page. Good luck!

1. 12 points Consider the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}, \qquad \vec{v}_2 = \begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix}, \qquad \vec{v}_3 = \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}.$$

(a) Are the vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ linearly independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.

(b) Write the vector
$$\vec{b} = \begin{bmatrix} 1 \\ -7 \\ 5 \end{bmatrix}$$
 as a linear combination of the vectors $\vec{v}_1, \ \vec{v}_2, \ \vec{v}_3$.

	[1	2	3	1	0		[1	0	1	1	2	
2. 14 points The matrix $A =$	2	3	5	2	1	bag the metric E	0	1	1	0	-1	$\begin{bmatrix} -1\\ 0 \end{bmatrix}$ as
	3	5	8	3	1	has the matrix $E =$	0	0	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ as	
	4	7	11	4	1		0	0	0	0		
its row-reduced echelon form.	-						-				L	

(a) Find a basis for the image of A.

(b) Find a basis for the kernel of A.

- (c) Compute:
 - rank A =
 - dim $(\operatorname{im} A) =$
 - dim $(\ker A) =$
 - dim $(\operatorname{im} A^{\top}) =$
 - dim $(\ker A^{\top}) =$

3. 12 points In each of the following cases, determine whether or not the given subset V of \mathbb{R}^n is a vector subspace. If it is, identify it as either the kernel or the image of a matrix A, and write down the matrix A. If it is not a vector subspace, explain why not.

(a)
$$V = \{ \vec{x} \in \mathbb{R}^3 \mid \vec{x} = t \begin{bmatrix} 1\\2\\1 \end{bmatrix} + s \begin{bmatrix} 3\\0\\4 \end{bmatrix}$$
, where t and s take all real values $\}$

(b)
$$V = \{ \vec{x} \in \mathbb{R}^3 \mid \vec{x} = t \begin{bmatrix} 1\\2\\1 \end{bmatrix} + \begin{bmatrix} 3\\0\\4 \end{bmatrix}$$
, where t takes all real values $\}$

(c)
$$V = \{ \vec{x} \in \mathbb{R}^4 \mid x_1 + x_2 - x_3 x_4 = 0 \}$$

(d)
$$V = \{ \vec{x} \in \mathbb{R}^4 \mid x_1 + x_2 + 3x_3 = 0, \quad x_3 - x_4 = 0, \quad 2x_1 + x_3 + x_4 = 0 \}$$

4. 14 pts Let
$$A = \begin{bmatrix} -2 & -1 \\ 3 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 0 \end{bmatrix}$.
(a) Find the least squares solution $\begin{bmatrix} x^* \\ y^* \end{bmatrix}$ of the inconsistent system $A \cdot \begin{bmatrix} x^* \\ y^* \end{bmatrix} = \vec{b}$.

(b) Find the 4×4 matrix associated with the projection of \mathbb{R}^4 onto the subspace im A.

(c) Find the projection of \vec{b} onto im A.

5. 14 pts Consider the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0\\1\\2 \end{bmatrix},$$

and let $A = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \vec{v_3} \end{bmatrix}$.

(a) Apply the Gram-Schmidt process to the vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , and write the result in the form A = QR.

(b) Compute the volume of the parallelepiped spanned by the vectors $\vec{v}_1, \ \vec{v}_2, \ \vec{v}_3$.

- 6. 10 pts Consider the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ which is a counterclockwise rotation of 30° about the *y*-axis, followed by a dilation by a factor of 6.
 - (a) Find the matrix A corresponding to T.

(b) What is the image of the vector
$$\begin{bmatrix} 5\\4\\3 \end{bmatrix}$$
 under the map T?

- 7. 10 points A 5 × 5 matrix A has eigenvalues $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 2$, $\lambda_4 = 3$, $\lambda_5 = 4$.
 - (a) Compute: tr A =
 - (b) Compute: det A =
 - (c) Compute: det $(3I_5 A) =$
 - (d) Is A invertible? Why, or why not?
 - (e) Is A orthogonal? Why, or why not?

- 8. <u>14 pts</u> Let $A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 9 & -5 \end{bmatrix}$.
 - (a) Find the characteristic polynomial of A.

(b) Find the eigenvalues of A.

(c) Find a basis for each eigenspace of A.