1. Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$. We have: $\operatorname{rref} A=\left[\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right]$, $\quad \operatorname{rref} A^{\top}=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$.
(a) Find a basis for $\operatorname{ker} A$:
$\left[\begin{array}{c}-3 \\ 1\end{array}\right]$
(b) Find a basis for $(\operatorname{ker} A)^{\perp}$:
(c) Find a basis for $\operatorname{ker} A^{\top}$:
(d) Find a basis for $\left(\operatorname{ker} A^{\top}\right)^{\perp}$.
(e) Which one of the above four linear subspaces- $\operatorname{ker} A,(\operatorname{ker} A)^{\perp}, \operatorname{ker} A^{\top},\left(\operatorname{ker} A^{\top}\right)^{\perp}-$ equals im A, and which one equals im A^{\top} ?

$$
\left.\begin{array}{rlrl}
(\operatorname{im} A)^{\perp} & =\operatorname{ker} A^{\top} & & \Longrightarrow
\end{array} \quad \operatorname{im} A=\left(\operatorname{ker} A^{\top}\right)^{\perp}\right)
$$

(f) What is the area of the parallelogram spanned by the column vectors of $5 I_{2}-A$?

$$
\left|\operatorname{det}\left(5 I_{2}-A\right)\right|=\left|\operatorname{det}\left[\begin{array}{cc}
4 & -3 \\
-2 & -1
\end{array}\right]\right|=|-10|=10
$$

2. A company gathers the following data:

Year	1995	1996	1997	1998
Annual Sales (in millions of dollars)	2.0	2.5	3.2	4.1

Represent the years $1995,1996,1997,1998$ as $0,1,2,3$, respectively, and let x denote the year. Let y denote the annual sales (in millions of dollars).
(a) Find the least squares line relating x and y.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1 \\
3 & 1
\end{array}\right] ; \quad A^{\top} A=\left[\begin{array}{cc}
14 & 6 \\
6 & 4
\end{array}\right] ; \quad\left(A^{\top} A\right)^{-1}=\left[\begin{array}{cc}
0.2 & -0.3 \\
-0.3 & 0.7
\end{array}\right] ; \\
{\left[\begin{array}{c}
m \\
b
\end{array}\right]=\left(A^{\top} A\right)^{-1} A^{\top} \cdot y=\left[\begin{array}{cccc}
-0.3 & -0.1 & 0.1 & 0.3 \\
0.7 & 0.4 & 0.1 & -0.2
\end{array}\right]\left[\begin{array}{c}
2.0 \\
2.5 \\
3.2 \\
4.1
\end{array}\right]=\left[\begin{array}{c}
0.7 \\
1.9
\end{array}\right]}
\end{gathered}
$$

The least square line has equation $y=m x+b$, that is, $y=0.7 x+1.9$.
(b) Use the equation obtained in part (a) to estimate the annual sales for the year 2000.

The year 2000 corresponds to $x=5$; the predicted sales are $y(5)=0.7 \cdot 5+1.9=5.4$ million dollars.
3. Let A and B be two 3×3 matrices, with $\operatorname{det} A=-2$ and $\operatorname{det} B=0$.
(a) Is A invertible? If yes, compute $\operatorname{det}\left(A^{-1}\right)$. If not, say so.

Since $\operatorname{det} A \neq 0, A$ is invertible, and $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{-1}=-\frac{1}{2}$.
(b) Is B invertible? If yes, compute $\operatorname{det}\left(B^{-1}\right)$. If not, say so.

Since $\operatorname{det} B=0, B$ is not invertible.
(c) Compute: $\operatorname{det}(4 A)=4^{3} \operatorname{det} A=-128$.
(d) Compute: $\operatorname{det}\left(A^{4}\right)=(\operatorname{det} A)^{4}=16$.

