Prof. A. Suciu LINEAR ALGEBRA

ANSWERS TO QUIZ 5

1. Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$
. We have: $\operatorname{rref} A = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$, $\operatorname{rref} A^{\top} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$

(a) Find a basis for $\ker A$:

 $\begin{bmatrix} -3\\1 \end{bmatrix}$

(b) Find a basis for $(\ker A)^{\perp}$:

 $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$

(c) Find a basis for $\ker A^{\top}$:

 $\begin{bmatrix} -2\\1\end{bmatrix}$

(d) Find a basis for $(\ker A^{\top})^{\perp}$.

- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
- (e) Which one of the above four linear subspaces— $\ker A$, $(\ker A)^{\perp}$, $\ker A^{\top}$, $(\ker A^{\top})^{\perp}$ —equals im A, and which one equals im A^{\top} ?

$$(\operatorname{im} A)^{\perp} = \ker A^{\top}$$
 \Longrightarrow $\operatorname{im} A = (\ker A^{\top})^{\perp}$
 $(\operatorname{im} A^{\top})^{\perp} = \ker A$ \Longrightarrow $\operatorname{im} A^{\top} = (\ker A)^{\perp}$

(f) What is the area of the parallelogram spanned by the column vectors of $5I_2 - A$?

$$|\det(5I_2 - A)| = \left|\det\begin{bmatrix} 4 & -3 \\ -2 & -1 \end{bmatrix}\right| = |-10| = 10$$

2. A company gathers the following data:

Year	1995	1996	1997	1998
Annual Sales (in millions of dollars)	2.0	2.5	3.2	4.1

Represent the years 1995, 1996, 1997, 1998 as 0, 1, 2, 3, respectively, and let x denote the year. Let y denote the annual sales (in millions of dollars).

(a) Find the least squares line relating x and y.

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}; \qquad A^{\top}A = \begin{bmatrix} 14 & 6 \\ 6 & 4 \end{bmatrix}; \qquad (A^{\top}A)^{-1} = \begin{bmatrix} 0.2 & -0.3 \\ -0.3 & 0.7 \end{bmatrix};$$

$$\begin{bmatrix} m \\ b \end{bmatrix} = (A^{\top}A)^{-1}A^{\top} \cdot y = \begin{bmatrix} -0.3 & -0.1 & 0.1 & 0.3 \\ 0.7 & 0.4 & 0.1 & -0.2 \end{bmatrix} \begin{bmatrix} 2.0 \\ 2.5 \\ 3.2 \\ 4.1 \end{bmatrix} = \begin{bmatrix} 0.7 \\ 1.9 \end{bmatrix}$$

The least square line has equation y = mx + b, that is, y = 0.7x + 1.9.

- (b) Use the equation obtained in part (a) to estimate the annual sales for the year 2000. The year 2000 corresponds to x = 5; the predicted sales are $y(5) = 0.7 \cdot 5 + 1.9 = 5.4$ million dollars.
- **3.** Let A and B be two 3×3 matrices, with det A = -2 and det B = 0.
 - (a) Is A invertible? If yes, compute $\det(A^{-1})$. If not, say so. Since $\det A \neq 0$, A is invertible, and $\det(A^{-1}) = (\det A)^{-1} = -\frac{1}{2}$.
 - (b) Is B invertible? If yes, compute $\det(B^{-1})$. If not, say so. Since $\det B = 0$, B is not invertible.
 - (c) Compute: $\det(4A) = 4^3 \det A = -128$.
 - (d) Compute: $\det(A^4) = (\det A)^4 = 16$.