1. 12 points

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & 3 & 4 & 5 \\
-1 & 0 & 1 & 2 & 3 \\
2 & 3 & 0 & 5 & 8
\end{array}\right] \quad \longrightarrow \quad \operatorname{rref} A=\left[\begin{array}{rcccr}
1 & 0 & 0 & -2 & -\frac{7}{2} \\
0 & 1 & 0 & 3 & 5 \\
0 & 0 & 1 & 0 & -\frac{1}{2}
\end{array}\right]
$$

(a) Find a basis for the image of A.

Columns of A corresponding to the pivot columns of $\operatorname{rref} A$:

$$
\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right] .
$$

(b) Find a basis for the kernel of A.

Independent solution vectors to equation $(\operatorname{rref} A) \cdot \vec{x}=\overrightarrow{0}$:

$$
\left[\begin{array}{c}
7 \\
-10 \\
1 \\
0 \\
2
\end{array}\right], \quad\left[\begin{array}{c}
2 \\
-3 \\
0 \\
1 \\
0
\end{array}\right] .
$$

(c) Find the rank and the nullity of A.

$$
\operatorname{rank} A=\operatorname{dim}(\operatorname{im} A)=\#\{\text { basis vectors of } \operatorname{im} A\}=3
$$

$$
\text { nullity } A=\operatorname{dim}(\operatorname{ker} A)=\#\{\text { basis vectors of } \operatorname{ker} A\}=2
$$

2. 16 points Consider the folowing four vectors in \mathbb{R}^{4}.

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
0 \\
3
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
3
\end{array}\right], \quad \vec{v}_{4}=\left[\begin{array}{l}
2 \\
1 \\
7 \\
4
\end{array}\right] .
$$

Also let A be the 4×4 matrix with columns $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$.

$$
\begin{aligned}
& A= {\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 3 \\
0 & 1 & 3 & 3 \\
2 & 1 & 7 & 4
\end{array}\right] \longrightarrow \quad \operatorname{rref} A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 1 & \frac{5}{3} \\
0 & 0 & 0 & 0
\end{array}\right] } \\
&(\operatorname{rref} A) \cdot \vec{x}=\overrightarrow{0} \quad \Longrightarrow \quad \vec{x}=t \cdot\left[\begin{array}{r}
-2 \\
\frac{1}{3} \\
-\frac{5}{3} \\
1
\end{array}\right]
\end{aligned}
$$

(a) Are the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them. $\operatorname{rank} A=\#\{$ pivot columns of rref $A\}=3$, which is less than $n=\#\{$ columns of $A\}=4$. Thus, the column vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ are (linearly) dependent. A linear dependence is given by any non-zero vector in $\operatorname{ker} A=\operatorname{ker}(\operatorname{rref} A)$. E.g., picking $t=3$ gives:

$$
-6 \vec{v}_{1}+\vec{v}_{2}-5 \vec{v}_{3}+3 \vec{v}_{4}=\overrightarrow{0}
$$

(b) Do the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ form a basis for \mathbb{R}^{4} ? Explain your answer.

The vectors are not independent, thus, per force, they do not form a basis.
(c) Does the equation $A \cdot \vec{x}=\overrightarrow{0}$ only have the solution $\vec{x}=\overrightarrow{0}$, or does it have other solutions? Explain your answer.
Yes, it does, since any vector \vec{x} in $\operatorname{ker} A$ is also a solution (or, the nullity of A is >0).
(d) Does the equation $A \cdot \vec{x}=\vec{b}$ have a solution for every choice of \vec{b} in \mathbb{R}^{4} ? Explain your answer.
No, it doesn't, since the rank of A is less than 4 (the number of columns of A).
3. 10 points Let V be the subspace of \mathbb{R}^{3} defined by the equation $x_{1}+2 x_{2}-5 x_{3}=0$.
(a) Find a basis for V.

The space $V=\operatorname{ker}\left[\begin{array}{lll}1 & 2 & -5\end{array}\right]$ (a plane in \mathbb{R}^{3}) has basis

$$
\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] .
$$

(b) Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $\operatorname{ker} T=\{\overrightarrow{0}\}$ and im $T=V$. Describe T by its matrix A.

$$
A=\left[\begin{array}{cc}
5 & -2 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

4. 12 points In each of the following, a subset V of \mathbb{R}^{3} is given. Circle one answer:
(a) $V=\left\{\left.\left[\begin{array}{c}x+y+z \\ x+z \\ y\end{array}\right] \right\rvert\, x, y, z\right.$ arbitrary constants $\begin{cases}\text { Is closed under addition: } & \text { YES } \\ \text { Is closed under scalar multiplication: } & \text { YES } \\ \text { Is a vector subspace of } \mathbb{R}^{3}: & \text { YES }\end{cases}$
(b) $V=\left\{\left.\left[\begin{array}{c}x+y+z \\ x+z \\ y+1\end{array}\right] \right\rvert\, x, y, z\right.$ arbitrary constants $\begin{cases}\text { Is closed under addition: } & \text { NO } \\ \text { Is closed under scalar multiplication: } & \text { NO } \\ \text { Is a vector subspace of } \mathbb{R}^{3}: & \text { NO }\end{cases}$
(c) $V=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, x, y, z\right.$ positive integers $\begin{cases}\text { Is closed under addition: } & \text { YES } \\ \text { Is closed under scalar multiplication: } & \text { NO } \\ \text { Is a vector subspace of } \mathbb{R}^{3}: & \text { NO }\end{cases}$
(d) $V=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, x y \leq 0\right\} \begin{array}{ll}\text { Is closed under addition: } & \text { NO } \\ \text { Is closed under scalar multiplication: } & \text { YES } \\ \text { Is a vector subspace of } \mathbb{R}^{3}: & \text { NO }\end{array}$
