1. Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$. What is the area of the parallelogram spanned by the column vectors of $5 I_{2}-A$?
2. Compute the area of the triangle with vertices at $(1,2),(5,-7),(-3,8)$.
3. Compute the area of the quadrilateral with vertices at $(1,2),(5,-7),(-3,8),(10,10)$.
4. Find the volume of the 3 -paralleliped defined by the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
0 \\
3
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
5 \\
1 \\
3 \\
-4
\end{array}\right] .
$$

5. Find a 2×2 matrix A such that $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}6 \\ 5\end{array}\right]$ are eigenvectors of A, with eigenvalues -2 and 4 , respectively.
6. A 5×5 matrix A has eigenvalues $\lambda_{1}=-1, \lambda_{2}=2, \lambda_{3}=2, \lambda_{4}=3, \lambda_{5}=4$.
(a) Compute: $\operatorname{tr} A=$
(b) Compute: $\operatorname{det} A=$
(c) Compute: $\operatorname{det}\left(3 I_{5}-A\right)=$
(d) Is A invertible? Why, or why not?
(e) Is A orthogonal? Why, or why not?
7. Let A and B be two 3×3 matrices, with $\operatorname{det} A=-2$ and $\operatorname{det} B=0$.
(a) Is A invertible? If yes, compute $\operatorname{det}\left(A^{-1}\right)$. If not, say so.
(b) Is B invertible? If yes, compute $\operatorname{det}\left(B^{-1}\right)$. If not, say so.
(c) Compute: $\operatorname{det}(4 A)=$
(d) Compute: $\operatorname{det}\left(A^{4}\right)=$
8. Let A be a 3×3 matrix, with eigenvalues $\lambda_{1}=-2, \lambda_{2}=0, \lambda_{3}=5$.
(a) Compute $\operatorname{tr}(A)$ and $\operatorname{det}(A)$.
(b) Is A invertible? Explain your answer.
(c) Is A diagonalizable? Explain your answer.
(d) Compute $\operatorname{tr}\left(A^{3}\right)$ and $\operatorname{det}\left(A^{3}\right)$.
9. Let $A=\left[\begin{array}{rrr}4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 9 & -5\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.
10. Let $A=\left[\begin{array}{ll}2 & 2 \\ 3 & 1\end{array}\right]$.
(a) Find the characteristic equation for A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.
(d) Form a matrix S using the two independent eigenvectors from part () as column vectors, and calculate S^{-1}.
(e) Calculate $S^{-1} \cdot A \cdot S$. Explain your answer.
11. Let $A=\left[\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.
(d) Find a diagonal matrix Λ and an invertible matrix S such that $A=S \cdot \Lambda \cdot S^{-1}$. [You do not have to calculate S^{-1}.]
