

Name:

NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

MTH 1230

FINAL EXAM

Spring 2001

<u>Instructions</u>: Put your name in the blanks above. Put your final answers to each question in the designated spaces. Calculators are permitted. A single sheet of formulas is allowed. Show your work. If there is not enough room to show your work, use the back page.

1. 12 points Consider the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\2\\5 \end{bmatrix}, \qquad \vec{v}_2 = \begin{bmatrix} 6\\2\\4 \end{bmatrix}, \qquad \vec{v}_3 = \begin{bmatrix} -7\\1\\4 \end{bmatrix}.$$

(a) Are the vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ linearly independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.

(b) Write the vector
$$\vec{b} = \begin{bmatrix} -2\\1\\3 \end{bmatrix}$$
 as a linear combination of the vectors $\vec{v}_1, \ \vec{v}_2, \ \vec{v}_3$.

2. 12 points The matrix $A =$	$\begin{bmatrix} 1 \\ 6 \\ 11 \\ 16 \end{bmatrix}$	2 7 12 17	3 8 13 18	4 9 14 19	5 10 15 20	has the matrix $E =$	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} -1 \\ 2 \\ 0 \\ 0 \end{array} $	$-2 \\ 3 \\ 0 \\ 0$	$\begin{bmatrix} -3\\4\\0\\0 \end{bmatrix}$
as its row-reduced echelon fo					_		L				- J

(a) Find a basis for the image of A.

(b) Find a basis for the kernel of A.

- (c) Compute:
 - rank A =
 - dim $(\operatorname{im} A) =$
 - dim $(\ker A) =$
 - dim $(\operatorname{im} A)^{\perp} =$
 - dim $(\ker A)^{\perp} =$

3. 12 pts The number of students getting an A on the Spring final exam of a certain Linear Algebra course is as follows:

Year	1997	1998	1999	2000
A's	2	1	4	6

Represent the years 1997, 1998, 1999, 2000 as 0, 1, 2, 3, respectively, and let t denote the year (after 1997). Let y denote the number of A's.

(a) Find the line y = mt + b that best fits the above data points, using the least squares method.

(b) Use the equation obtained in part (a) to estimate how many students will get an A in Linear Algebra in Spring 2001.

4. 14 pts Consider the independent vectors

$$\vec{v}_1 = \begin{bmatrix} 0\\3\\4 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 0\\2\\1 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

(a) Use the Gram-Schmidt process to find an othonormal basis, $\vec{w_1}$, $\vec{w_2}$, $\vec{w_3}$, for the space spanned by the vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$.

5. 14 pts Let
$$A = \begin{bmatrix} -\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\ 0 & -1 & 0 \\ -\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \end{bmatrix}$$
.

_

(a) Check if A is orthogonal.

(b) Find A^{-1} .

(c) Find det(A).

(d) Find the projection matrix in \mathbb{R}^3 onto the image of the matrix $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 2 & 0 \end{bmatrix}$.

(e) Find the image of the vector
$$\begin{bmatrix} -2\\5\\1 \end{bmatrix}$$
 under the above projection.

					Γ1	1	1]
6.	14 points	Find the Singular	Value Decomposition	(SVD) for the matrix $A =$		1	
		_			[-1	T	Ţ

7. 10 points Find a 2 × 2 matrix A such that $\begin{bmatrix} 4\\2 \end{bmatrix}$ and $\begin{bmatrix} 1\\1 \end{bmatrix}$ are eigenvectors of A, with eigenvalues -2 and 5, respectively.

- 8. <u>14 pts</u> Let $A = \begin{bmatrix} 5 & 6 & 0 \\ 7 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.
 - (a) Find the characteristic polynomial of A.

(b) Find the eigenvalues of A.

(c) Find a basis for each eigenspace of A.

(d) Find an invertible matrix S and a diagonal matrix D such that $A = S \cdot D \cdot S^{-1}$. [You do not have to calculate S^{-1} .] 9. ExtraCredit: 10 pts Let $A = \begin{bmatrix} 27 & -12 \\ 56 & -25 \end{bmatrix}$. Write A^t (the matrix A raised to the power t, a positive integer) in the form of a single 2×2 matrix. (You may use the fact that the vector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector with associated eigenvalue 3, and the vector $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$ is an eigenvector with associated eigenvalue 3.