1	2	3	4	5	6	7	8	Σ

Name: \qquad

NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS
 FINAL EXAM

Spring 2001
MTH 1230
Instructions: Put your name in the blanks above. Put your final answers to each question in the designated spaces. Calculators are permitted. A single sheet of formulas is allowed. Show your work. If there is not enough room to show your work, use the back page.

1. 12 points Consider the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
6 \\
2 \\
4
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
-7 \\
1 \\
4
\end{array}\right]
$$

(a) Are the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ linearly independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
(b) Write the vector $\vec{b}=\left[\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right]$ as a linear combination of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
2. 12 points The matrix $A=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20\end{array}\right]$ has the matrix $E=\left[\begin{array}{ccccc}1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ as its row-reduced echelon form.
(a) Find a basis for the image of A.
(b) Find a basis for the kernel of A.
(c) Compute:

- $\operatorname{rank} A=$
- $\operatorname{dim}(\operatorname{im} A)=$
- $\operatorname{dim}(\operatorname{ker} A)=$
- $\operatorname{dim}(\operatorname{im} A)^{\perp}=$
- $\operatorname{dim}(\operatorname{ker} A)^{\perp}=$

3. 12 pts The number of students getting an A on the Spring final exam of a certain Linear Algebra course is as follows:

Year	1997	1998	1999	2000
A's	2	1	4	6

Represent the years $1997,1998,1999,2000$ as $0,1,2,3$, respectively, and let t denote the year (after 1997). Let y denote the number of A's.
(a) Find the line $y=m t+b$ that best fits the above data points, using the least squares method.
(b) Use the equation obtained in part (a) to estimate how many students will get an A in Linear Algebra in Spring 2001.
4. 14 pts Consider the independent vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
0 \\
3 \\
4
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

(a) Use the Gram-Schmidt process to find an othonormal basis, $\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}$, for the space spanned by the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
(b) Use the above computation to find the QR-decomposition of the matrix $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 3 & 2 & 2 \\ 4 & 1 & 3\end{array}\right]$.
5. 14 pts Let $A=\left[\begin{array}{ccc}-\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\ 0 & -1 & 0 \\ -\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2}\end{array}\right]$.
(a) Check if A is orthogonal.
(b) Find A^{-1}.
(c) Find $\operatorname{det}(A)$.
(d) Find the projection matrix in \mathbb{R}^{3} onto the image of the matrix $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 2 & 0\end{array}\right]$.
(e) Find the image of the vector $\left[\begin{array}{c}-2 \\ 5 \\ 1\end{array}\right]$ under the above projection.
6. 14 points Find the Singular Value Decomposition (SVD) for the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 1 & 1\end{array}\right]$.
7. 10 points Find a 2×2 matrix A such that $\left[\begin{array}{l}4 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are eigenvectors of A, with eigenvalues -2 and 5 , respectively.
8. 14 pts Let $A=\left[\begin{array}{lll}5 & 6 & 0 \\ 7 & 6 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.
(d) Find an invertible matrix S and a diagonal matrix D such that $A=S \cdot D \cdot S^{-1}$. [You do not have to calculate S^{-1}.]
9. ExtraCredit: 10 pts Let $A=\left[\begin{array}{ll}27 & -12 \\ 56 & -25\end{array}\right]$. Write A^{t} (the matrix A raised to the power t, a positive integer) in the form of a single 2×2 matrix. (You may use the fact that the vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector with associated eigenvalue 3 , and the vector $\left[\begin{array}{l}3 \\ 7\end{array}\right]$ is an eigenvector with associated eigenvalue -1 .)

