MTH 1230

Prof. Alexandru Suciu LINEAR ALGEBRA

Spring 2001

1. 12 pts

(a) Compute the area of the region enclosed by the following quadrilateral:

(1)		C + 1	11 1	1.1	.1 .	2
(b)	Compute the	area of the	parallelogram	spanned by	y the vectors	1

$\lceil 2 \rceil$		$\begin{bmatrix} 0 \end{bmatrix}$	
2	and	1	
1	and	1	•
3		1	
$\begin{bmatrix} 2\\1\\3\end{bmatrix}$	and	1 1	

- 2. 7 points Let A and B be two 5 × 5 matrices, with det A = 0 and det B = -3.
 (a) Is A invertible? Why, or why not?
 - (b) Is A orthogonal? Why, or why not?
 - (c) Is *B* invertible? Why, or why not?
 - (d) Is B orthogonal? Why, or why not?
 - (e) Compute: det $(B \cdot A \cdot B) =$
 - (f) Compute: det $(B^{\top})^3 =$
 - (g) Compute: det(2B) =
- **3.** 8 points Find a 2 × 2 matrix A such that $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ -5 \end{bmatrix}$ are eigenvectors of A, with eigenvalues -7 and 3, respectively.

- **4.** 12 points A 4×4 matrix A has eigenvalues $\lambda_1 = -3$, $\lambda_2 = -2$, $\lambda_3 = 1$, $\lambda_4 = 4$.
 - (a) What is the characteristic polynomial of A?
 - (b) Compute tr(A) and det(A).
 - (c) What are the eigenvalues of A^2 ?
 - (d) Compute $\operatorname{tr}(A^2)$ and $\det(A^2)$.
 - (e) Compute det $(A + 2I_4)$
 - (f) Is A invertible? If yes, compute det (A^{-1}) . If not, explain why not.
 - (g) Is A diagonalizable? If yes, compute its diagonalization D. If not, explain why not.

- **5.** 12 points Let $A = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 4 & -3 \\ 0 & 1 & 8 \end{bmatrix}$.
 - (a) Find the characteristic polynomial of A.

(b) Find the eigenvalues of A.

(c) Find a basis for each eigenspace of A.

(d) Find an invertible matrix S and a diagonal matrix D such that $A = S \cdot D \cdot S^{-1}$. [You do not have to calculate S^{-1} .]