1. 12 pts
(a) Compute the area of the region enclosed by the folowing quadrilateral:

(b) Compute the area of the parallelogram spanned by the vectors

$$
\left[\begin{array}{l}
2 \\
2 \\
1 \\
3
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right] .
$$

2. 7 points Let A and B be two 5×5 matrices, with $\operatorname{det} A=0$ and $\operatorname{det} B=-3$.
(a) Is A invertible? Why, or why not?
(b) Is A orthogonal? Why, or why not?
(c) Is B invertible? Why, or why not?
(d) Is B orthogonal? Why, or why not?
(e) Compute: $\operatorname{det}(B \cdot A \cdot B)=$
(f) Compute: $\operatorname{det}\left(B^{\top}\right)^{3}=$
(g) Compute: $\operatorname{det}(2 B)=$
3. 8 points Find a 2×2 matrix A such that $\left[\begin{array}{c}2 \\ -3\end{array}\right]$ and $\left[\begin{array}{c}4 \\ -5\end{array}\right]$ are eigenvectors of A, with eigenvalues -7 and 3 , respectively.
4. 12 points $\mathrm{A} 4 \times 4$ matrix A has eigenvalues $\lambda_{1}=-3, \lambda_{2}=-2, \lambda_{3}=1, \lambda_{4}=4$.
(a) What is the characteristic polynomial of A ?
(b) Compute $\operatorname{tr}(A)$ and $\operatorname{det}(A)$.
(c) What are the eigenvalues of A^{2} ?
(d) Compute $\operatorname{tr}\left(A^{2}\right)$ and $\operatorname{det}\left(A^{2}\right)$.
(e) Compute $\operatorname{det}\left(A+2 I_{4}\right)$
(f) Is A invertible? If yes, compute $\operatorname{det}\left(A^{-1}\right)$. If not, explain why not.
(g) Is A diagonalizable? If yes, compute its diagonalization D. If not, explain why not.
5. 12 points Let $A=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 4 & -3 \\ 0 & 1 & 8\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.
(d) Find an invertible matrix S and a diagonal matrix D such that $A=S \cdot D \cdot S^{-1}$. [You do not have to calculate S^{-1}.]
