1. 10 pts Consider the independent vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] .
$$

Find an orthonormal basis $\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ for the subspace of \mathbb{R}^{4} which has $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ as a basis.
2. 12 points Let $A=\left[\begin{array}{rr}-3 & 4 \\ 9 & -12\end{array}\right]$.
(a) Find a basis for $\operatorname{ker} A$.
(b) Find a basis for $(\operatorname{ker} A)^{\perp}$.
(c) Find a basis for $\operatorname{ker} A^{\top}$.
(d) Find a basis for $\left(\operatorname{ker} A^{\top}\right)^{\perp}$.
3. 8 points Find all pairs of orthonormal vectors of the form $\quad \vec{v}_{1}=\left[\begin{array}{l}a \\ a \\ a\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}0 \\ b \\ c\end{array}\right]$
[Warning: The numbers a, b, c can very well be negative!]
4. 6 points Which of the following statements are true, for all $n \times n$ orthogonal matrices A ?
(a) $\operatorname{rref} A=I_{n}$
(b) $\operatorname{ker} A=\{\overrightarrow{0}\}$
(c) $\operatorname{im} A=\{\overrightarrow{0}\}$
(d) $A \cdot A^{\top}=A^{\top} \cdot A$
(e) $A^{-1}=A$
(f) $\left(A^{\top}\right)^{-1}=A$
5. 14 pts Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}-1 \\ 5 \\ 3\end{array}\right]$.
(a) Find the least squares solution \vec{x}^{*} of the inconsistent system $A \cdot \vec{x}=\vec{b}$.
(b) Find the 3×3 matrix associated with the projection of \mathbb{R}^{3} onto the subspace im A.
(c) Find the projection of the vector \vec{b} onto im A.

