MTH 1230

Prof. Alexandru Suciu LINEAR ALGEBRA

EXAM 3

1. 10 pts Consider the independent vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}.$$

Find an orthonormal basis $\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ for the subspace of \mathbb{R}^4 which has $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ as a basis.

2. 12 points Let
$$A = \begin{bmatrix} -3 & 4 \\ 9 & -12 \end{bmatrix}$$
.

(a) Find a basis for ker A.

(b) Find a basis for $(\ker A)^{\perp}$.

(c) Find a basis for $\ker A^\top.$

(d) Find a basis for $(\ker A^{\top})^{\perp}$.

3. 8 points Find all pairs of orthonormal vectors of the form $\vec{v}_1 = \begin{bmatrix} a \\ a \\ a \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0 \\ b \\ c \end{bmatrix}$ [Warning: The numbers a, b, c can very well be negative!]

- 4. 6 points Which of the following statements are true, for all n × n orthogonal matrices A?
 (a) rref A = I_n
 - (b) $\ker A = \{\vec{0}\}$
 - (c) im $A = \{\vec{0}\}$
 - (d) $A \cdot A^{\top} = A^{\top} \cdot A$
 - (e) $A^{-1} = A$
 - (f) $(A^{\top})^{-1} = A$

5. 14 pts Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} -1 \\ 5 \\ 3 \end{bmatrix}$.

(a) Find the least squares solution \vec{x}^* of the inconsistent system $A \cdot \vec{x} = \vec{b}$.

(b) Find the 3×3 matrix associated with the projection of \mathbb{R}^3 onto the subspace im A.

(c) Find the projection of the vector \vec{b} onto im A.