MTH 1230

EXAM 2

1. 12 points

Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ -1 & 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 5 & 8 \end{bmatrix}$$
.

(a) Find a basis for the image of A.

- (b) Find a basis for the kernel of A.
- (c) Find the rank and the nullity of A.

2. 16 points Consider the following four vectors in \mathbb{R}^4 .

$$\vec{v}_1 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 0\\2\\0\\3 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0\\1\\3\\3 \end{bmatrix}, \quad \vec{v}_4 = \begin{bmatrix} 2\\1\\7\\4 \end{bmatrix}.$$

Also let A be the 4×4 matrix with columns $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$.

- (a) Are the vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$, $\vec{v_4}$ independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
- (b) Do the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ form a basis for \mathbb{R}^4 ? Explain your answer.
- (c) Does the equation $A \cdot \vec{x} = \vec{0}$ only have the solution $\vec{x} = \vec{0}$, or does it have other solutions? Explain your answer.
- (d) Does the equation $A \cdot \vec{x} = \vec{b}$ have a solution for every choice of \vec{b} in \mathbb{R}^4 ? Explain your answer.

- **3.** 10 points Let V be the subspace of \mathbb{R}^3 defined by the equation $x_1 + 2x_2 5x_3 = 0$. (a) Find a basis for V.
 - (b) Find a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ such that ker $T = \{\vec{0}\}$ and im T = V. Describe T by its matrix A.

4. 12 points In each of the following, a subset V of \mathbb{R}^3 is given. Circle one answer:

(a)
$$V = \left\{ \begin{bmatrix} x+y+z\\x+z\\y \end{bmatrix} \mid x,y,z \text{ arbitrary constants} \right\}$$

Is closed under addition:	YES	NO
Is closed under scalar multiplication:	YES	NO
Is a vector subspace of \mathbb{R}^3 :	YES	NO

(b)
$$V = \left\{ \begin{bmatrix} x+y+z\\ x+z\\ y+1 \end{bmatrix} \mid x, y, z \text{ arbitrary constants} \right\}$$

Is closed under addition:	YES	NO
т 1 1 1 1 1, 1, 1,	VEG	MO

Is closed under scalar multiplication: YES NO Is a vector subspace of \mathbb{R}^3 : YES NO

(c)
$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x, y, z \text{ positive integers} \right\}$$

Is closed under addition:	YES	NO
Is closed under scalar multiplication:	YES	NO
Is a vector subspace of \mathbb{R}^3 :	YES	NO

(d)
$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid xy \le 0 \right\}$$

Is closed under addition: YES NO

- Is closed under scalar multiplication: YES NO
- Is a vector subspace of \mathbb{R}^3 : YES NO