1. 12 points

Let $A=\left[\begin{array}{rrrrr}1 & 2 & 3 & 4 & 5 \\ -1 & 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 5 & 8\end{array}\right]$.
(a) Find a basis for the image of A.
(b) Find a basis for the kernel of A.
(c) Find the rank and the nullity of A.
2. 16 points Consider the folowing four vectors in \mathbb{R}^{4}.

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
0 \\
3
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
3
\end{array}\right], \quad \vec{v}_{4}=\left[\begin{array}{l}
2 \\
1 \\
7 \\
4
\end{array}\right] .
$$

Also let A be the 4×4 matrix with columns $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$.
(a) Are the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
(b) Do the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ form a basis for \mathbb{R}^{4} ? Explain your answer.
(c) Does the equation $A \cdot \vec{x}=\overrightarrow{0}$ only have the solution $\vec{x}=\overrightarrow{0}$, or does it have other solutions? Explain your answer.
(d) Does the equation $A \cdot \vec{x}=\vec{b}$ have a solution for every choice of \vec{b} in \mathbb{R}^{4} ? Explain your answer.
3. 10 points Let V be the subspace of \mathbb{R}^{3} defined by the equation $x_{1}+2 x_{2}-5 x_{3}=0$.
(a) Find a basis for V.
(b) Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $\operatorname{ker} T=\{\overrightarrow{0}\}$ and $\operatorname{im} T=V$. Describe T by its matrix A.
4. 12 points In each of the following, a subset V of \mathbb{R}^{3} is given. Circle one answer:
(a) $V=\left\{\left.\left[\begin{array}{c}x+y+z \\ x+z \\ y\end{array}\right] \right\rvert\, x, y, z\right.$ arbitrary constants $\}$
Is closed under addition: YES NO

Is closed under scalar multiplication: YES NO Is a vector subspace of \mathbb{R}^{3} :

YES NO
(b) $V=\left\{\left.\left[\begin{array}{c}x+y+z \\ x+z \\ y+1\end{array}\right] \right\rvert\, x, y, z\right.$ arbitrary constants $\}$

Is closed under addition:
YES NO
Is closed under scalar multiplication: YES NO
Is a vector subspace of \mathbb{R}^{3} :
YES NO
(c) $V=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, x, y, z\right.$ positive integers $\}$

Is closed under addition:
YES
NO
Is closed under scalar multiplication:
YES
NO
Is a vector subspace of \mathbb{R}^{3} :
YES NO
(d) $V=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, x y \leq 0\right\}$

Is closed under addition: YES NO
Is closed under scalar multiplication: YES NO Is a vector subspace of \mathbb{R}^{3} :

YES NO

