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SOLUTIONS TO QUIZ 5

In each problem, decide whether the series converges or diverges. In either case, indicate which
test you are using, and justify your answer carefully.
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Hence, the given series also diverges.
• Method 2: Integral Test. Compute the corresponding improper integral:
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Hence, the given series diverges.

Problem 2.
∞∑

n=1
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• Method 1: Comparison Test. Compare the given series to
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, which is a

p-series with p = 2 > 1, and thus converges:
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Hence, the given series also converges.
• Method 2: Integral Test. Compute the corresponding improper integral:

∫ ∞
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< ∞

Hence, the given series converges.

Problem 3.
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Use the Ratio Test:
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Hence, the given series diverges.

Problem 4.
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Use the Root Test:
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Hence, the given series converges.


