Prof. Alexandru Suciu
MTH 1125
Calculus 3
Spring 2002
SOLUTIONS TO QUIZ 5
In each problem, decide whether the series converges or diverges. In either case, indicate which test you are using, and justify your answer carefully.

Problem 1. $\quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{3 n-1}}$

- Method 1: Comparison Test. Compare the given series to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{3 n}}$, which (up to a constant factor of $\frac{1}{\sqrt{3}}$) is a p-series with $p=\frac{1}{2} \leq 1$, and thus diverges:

$$
\frac{1}{\sqrt{3 n-1}}>\frac{1}{\sqrt{3 n}}, \quad \text { since } 3 n-1<3 n
$$

Hence, the given series also diverges.

- Method 2: Integral Test. Compute the corresponding improper integral:

$$
\int_{1}^{\infty} \frac{1}{\sqrt{3 x-1}} d x=\frac{1}{3} \int_{2}^{\infty} \frac{1}{\sqrt{u}} d u=\left.\frac{1}{3} 2 \sqrt{u}\right|_{2} ^{\infty}=\frac{2}{3}\left(\lim _{u \rightarrow \infty} \sqrt{u}-\sqrt{2}\right)=\infty
$$

Hence, the given series diverges.
Problem 2. $\sum_{n=1}^{\infty} \frac{3}{n^{2}+1}$

- Method 1: Comparison Test. Compare the given series to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}}}$, which is a p-series with $p=2>1$, and thus converges:

$$
\frac{3}{n^{2}+1}>\frac{1}{n^{2}}, \quad \text { since } 3 n^{2}>n^{2}+1
$$

Hence, the given series also converges.

- Method 2: Integral Test. Compute the corresponding improper integral:

$$
\int_{1}^{\infty} \frac{3}{x^{2}+1} d x=\left.3 \tan ^{-1}(x)\right|_{1} ^{\infty}=3\left(\lim _{x \rightarrow \infty} \tan ^{-1}(x)-\tan ^{-1}(1)\right)=3\left(\frac{\pi}{2}-\frac{\pi}{4}\right)=\frac{3 \pi}{4}<\infty
$$

Hence, the given series converges.
Problem 3. $\sum_{n=1}^{\infty} \frac{n!}{100^{n}}$
Use the Ratio Test:

$$
\rho=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)!}{100^{n+1}}}{\frac{n!}{100^{n}}}=\lim _{n \rightarrow \infty} \frac{(n+1)!}{n!} \frac{100^{n}}{100^{n+1}}=\lim _{n \rightarrow \infty} \frac{n+1}{100}=\infty>1
$$

Hence, the given series diverges.
Problem 4. $\sum_{n=1}^{\infty} \frac{2^{n} n^{n}}{(3 n+1)^{n}}$
Use the Root Test:

$$
\rho=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{2^{n} n^{n}}{(3 n+1)^{n}}}=\lim _{n \rightarrow \infty} \frac{2 n}{3 n+1}=\frac{2}{3}<1
$$

Hence, the given series converges.

