Prof. Alexandru Suciu

SOLUTIONS to QUIZ 4

1. 5 points Write down the first 4 terms of the following series. Does the series converge, or does it diverge? Find its sum if it converges. Explain!

$$
\sum_{n=1}^{\infty} \frac{2}{3^{n}}
$$

The series starts as:

$$
\sum_{n=1}^{\infty} \frac{2}{3^{n}}=\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\frac{2}{81}+\cdots
$$

This is a geometric series, with initial term $a=\frac{2}{3}$ and ratio $r=\frac{1}{3}$. Since $|r|=\frac{1}{3}<1$, the series converges, and its sum is

$$
\frac{a}{1-r}=\frac{\frac{2}{3}}{1-\frac{1}{3}}=1
$$

2. 5 points Write down the first 4 terms of the following series. Does the series converge, or does it diverge? Find its sum if it converges. Explain!

$$
\sum_{n=2}^{\infty}\left(\frac{1}{\ln (n)}-\frac{1}{\ln (n+1)}\right)
$$

The series starts as:

$$
\left(\frac{1}{\ln 2}-\frac{1}{\ln 3}\right)+\left(\frac{1}{\ln 3}-\frac{1}{\ln 4}\right)+\left(\frac{1}{\ln 4}-\frac{1}{\ln 5}\right)+\left(\frac{1}{\ln 5}-\frac{1}{\ln 6}\right)+\cdots
$$

This is a telescoping series. The n-th partial sum is

$$
s_{n}=\frac{1}{\ln 2}-\frac{1}{\ln (n+1)}
$$

and this sequence converges, since $\lim _{n \rightarrow \infty} \frac{1}{\ln (n+1)}=0$. Hence the series converges, and its sum is:

$$
\frac{1}{\ln 2} \simeq 1.4427
$$

3. 5 points Does the following series converge, or does it diverge? Explain!

$$
\sum_{n=1}^{\infty} \frac{2 n}{10 n+1}
$$

We have:

$$
\lim _{n \rightarrow \infty} \frac{2 n}{10 n+1}=\lim _{n \rightarrow \infty} \frac{2}{10+\frac{1}{n}}=\frac{1}{5}
$$

Since this limit does not equal 0 , the series itself diverges, by the Divergence Test (a.k.a. the n-th Term Test).
4. 5 points For which values of x does the following series converge? Find the sum of the series when it converges.

$$
\sum_{n=0}^{\infty}\left(\frac{x-3}{2}\right)^{n}
$$

This is a geometric series, with initial term $a=1$ and ratio $r=\frac{x-3}{2}$. The series converges precisely when $|r|<1$, that is:

$$
\left|\frac{x-3}{2}\right|<1 \Longleftrightarrow-2<x-3<2 \Longleftrightarrow 1<x<5
$$

For x in the interval $(1,5)$, the sum of the series is:

$$
\frac{a}{1-r}=\frac{1}{1-\frac{x-3}{2}}=\frac{2}{5-x}
$$

