SOLUTIONS to QUIZ 3

1. 4 points You are given a formula for the nth term a_{n} of a sequence $\left\{a_{n}\right\}$. Find the values $\overline{a_{1}}, a_{2}, a_{3}, a_{4}$.

$$
a_{n}=\frac{(-1)^{n+1}}{n^{2}+1}
$$

$$
a_{1}=\frac{1}{2}, \quad a_{2}=-\frac{1}{5}, \quad a_{3}=\frac{1}{10}, \quad a_{4}=-\frac{1}{17}
$$

2. 4 points Does the following sequence converge, or does it diverge? Find the limit if it is a convergent sequence. Explain!

$$
a_{n}=\frac{\cos n}{n^{2}}
$$

Recall that

$$
-1 \leq \cos (n) \leq 1
$$

Hence

$$
\frac{-1}{n^{2}} \leq \frac{\cos n}{n^{2}} \leq \frac{1}{n^{2}}
$$

Now, since

$$
\lim _{n \rightarrow \infty} \frac{-1}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0
$$

we conclude, by the Sandwich Principle, that the sequence $\left\{a_{n}\right\}$ converges to the same limit:

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

3. 4 points Does the following sequence converge, or does it diverge? Find the limit if it is a convergent sequence. Explain!

$$
a_{n}=\frac{7+10 n^{4}}{4 n^{3}-n^{2}+5}
$$

We can compute the limit two ways, either by dividing top and bottom by n^{4} :

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\frac{7}{n^{4}}+10}{\frac{4}{n}-\frac{1}{n^{2}}+\frac{5}{n^{4}}}=\frac{0+10}{0-0+0}=\infty
$$

or by applying repeatedly l'Hôpital's rule:

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{40 n^{3}}{12 n^{2}-2 n}=\lim _{n \rightarrow \infty} \frac{120 n^{2}}{24 n-2}=\lim _{n \rightarrow \infty} \frac{240 n}{24}=\infty
$$

Either way, we find that the sequence diverges.
4. 4 points Show that the following sequence is decreasing.

$$
a_{n}=\frac{4 n+3}{2 n+1}
$$

- First method. We verify directly that $a_{n}>a_{n+1}$, for all n :

$$
\begin{aligned}
\frac{4 n+3}{2 n+1} & >\frac{4 n+7}{2 n+3} \\
8 n^{2}+12 n+6 n+9 & >8 n^{2}+4 n+14 n+7 \\
9 & >7 \quad \text { checks! }
\end{aligned}
$$

- Second method. Let $f(x)=\frac{4 x+3}{2 x+1}$. Then:

$$
f^{\prime}(x)=\frac{4(2 x+1)-2(4 x+3)}{(2 x+1)^{2}}=-\frac{2}{(2 x+1)^{2}}<0
$$

and so $f(x)$ is decreasing. Thus, the sequence with terms $a_{n}=f(n)$ is also decreasing.
5. 4 points A sequence $\left\{a_{n}\right\}$ is given recursively, as follows:

$$
a_{1}=\sin (1) \quad a_{2}=\max \left\{a_{1}, \sin (2)\right\} \quad \ldots \quad a_{n+1}=\max \left\{a_{n}, \sin (n+1)\right\} \quad \ldots
$$

Show that the sequence converges.

- The sequence is increasing (to be more precise, non-decreasing), since a_{n+1} is at least as big as a_{n}, by definition.
- The sequence is bounded above by the constant $M=1$, since

$$
a_{n} \leq \max \{\sin (1), \ldots, \sin (n)\} \leq 1
$$

- Thus, by the Theorem on monotone, bounded sequences, our sequence $\left\{a_{n}\right\}$ converges.

