Prof. Alexandru Suciu

Calculus 3
Spring 2002
MTH 1125

QUIZ 7

1. 8 points Consider the power series

$$
\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n^{3 / 4}}
$$

For what values of x does the series converge absolutely, converge conditionally, or diverge? Follow the steps below:
(a) Find the center of the series.
(b) Find the radius of convergence of the series.
(c) Test for convergence at the end-points of the interval of convergence.
(d) Finally, organize your answer, as follows:

- Series converges absolutely for: \qquad
- Series converges conditionally for: \qquad
- Series diverges elsewhere.

2. 6 points From the definition, find the degree 3 Taylor polynomial for $f(x)=\ln x$, centered at $a=1$.
3. 6 points Recall that

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots
$$

for all real x. Using this Maclaurin series for $\cos x$, find:
(a) The degree 4 Maclaurin polynomial for $\cos (\sqrt{2 x})$.
(b) The degree 4 Maclaurin polynomial for $\frac{\cos x-1}{x^{2}}$.

