MSRI Summer Graduate School on Hyperplane Arrangements and Applications

August 2-13, 2004

Homework Problems, second installment

- 1. (a) Show that the OS ideal for the rank-three braid arrangement with defining polynomial $Q(\mathcal{A}) = xyz(x-y)(x-z)(y-z)$ is generated by quadratic relations.
 - (b) Find an arrangement for which the OS ideal is not generated by quadratic relations.
- 2. Show that e_S is in the OS ideal if S is dependent.
- 3. Show that the grading of the exterior algebra E by L given by $E_X = \langle e_S | \bigvee S = X \rangle$ for $X \in L$ induces a well-defined grading of the OS algebra A.
- 4. Show the natural map $A(\mathcal{A}_X) \to A(\mathcal{A})$ is injective for every $X \in L$.
- 5. Show that the atomic complex of L (whose simplices are sets of atoms whose join not equal to 1_L) is homotopy equivalent to the flag complex of $L \{0_L, 1_L\}$.
- 6. Let \mathcal{A} be the braid arrangement in $\mathbb{R}^{\ell+1}$:

$$\mathcal{A} = \{ \ker(x_i - x_j) \mid 1 \le i < j \le \ell + 1 \}.$$

Find $T := T(\mathcal{A})$ and $\mu(T)$ when $\ell = 3$. (Remark. If you set

$$x = x_1 - x_2, \ y = x_1 - x_3, \ z = x_1 - x_4$$

then $\mathcal{A} = \{ \ker(x), \ker(y), \ker(z), \ker(x-y), \ker(y-z), \ker(x-z) \}$

- 7. Prove that $W(\mathcal{A})$ is a finite reflection group if \mathcal{A} is a reflection arrangement.
- 8. Which is the more obvious?
 - (a) $\mathcal{A}(W(\mathcal{A})) = \mathcal{A}$ for any reflection arrangement \mathcal{A} ,
 - (b) $W(\mathcal{A}(W)) = W$ for any finite reflection group W

Prove the more obvious one and discuss the other one.

- 9. Let $\mathcal{A} = A_{\ell}$.
 - (a) Show that \mathcal{A} is a reflection arrangement.
 - (b) Find $|\mathcal{A}|$ and $|W(\mathcal{A})|$.
 - (c) Describe the group $W(\mathcal{A})$ or find a group isomorphic to $W(\mathcal{A})$.

10. Let $\mathcal{A} = B_{\ell}$.

- (a) Show that \mathcal{A} is a reflection arrangement.
- (b) Find $|\mathcal{A}|$ and $|W(\mathcal{A})|$.
- (c) Describe the group $W(\mathcal{A})$ or find a group isomorphic to $W(\mathcal{A})$.

11. Let $\mathcal{A} = D_{\ell}$.

- (a) Show that \mathcal{A} is a reflection arrangement.
- (b) Find $|\mathcal{A}|$ and $|W(\mathcal{A})|$.
- (c) Describe the group $W(\mathcal{A})$ or find a group isomorphic to $W(\mathcal{A})$.
- 12. Find a system of simple roots and the Coxeter diagram of B_3 .
- 13. Let \mathcal{A} be a reflection arrangement. Show $|\mu(X)| = |\{w \in W \mid \operatorname{Fix}(w) = X\}|$ for $X \in L(\mathcal{A})$.
- 14. Let V be an ℓ -dimensional vector space with a basis e_i $(1 \le i \le \ell)$. Define the inner product on V by

$$(e_i, e_i) = 4/9, \ (e_i, e_j) = -1/18 \ (i \neq j)$$

Let

$$\mathcal{A}_{\ell} = \{ \ker(x_i - x_j) \ (1 \le i < j \le \ell), \\ \ker(x_i + x_j + x_k) \ (1 \le i < j < k \le \ell), \\ \ker(x_{i_1} + x_{i_2} + x_{i_3} + x_{i_4} + x_{i_5} + x_{i_6}) \ (1 \le i_1 < i_2 < i_3 < i_4 < i_5 < i_6 \le \ell) \}.$$

It is known that $\Delta := \{e_i - e_{i+1} \ (1 \le i < \ell), e_{\ell-2} + e_{\ell-1} + e_\ell\}$ is a system of simple roots. Let $E_6 = \mathcal{A}_6$ and $E_7 = \mathcal{A}_7$.

- (a) Find $|E_6|$ and $|E_7|$.
- (b) Find the Coxeter diagrams of E_6 and E_7 .
- (c) Show E_6 and E_7 are reflection arrangement.