MSRI Summer Graduate School on Hyperplane Arrangements and Applications

August 2-13, 2004

Homework Problems, second installment

1. (a) Show that the OS ideal for the rank-three braid arrangement with defining polynomial $Q(\mathcal{A})=x y z(x-y)(x-z)(y-z)$ is generated by quadratic relations.
(b) Find an arrangement for which the OS ideal is not generated by quadratic relations.
2. Show that e_{S} is in the OS ideal if S is dependent.
3. Show that the grading of the exterior algebra E by L given by $E_{X}=\left\langle e_{S} \mid \bigvee S=X\right\rangle$ for $X \in L$ induces a well-defined grading of the OS algebra A.
4. Show the natural map $A\left(\mathcal{A}_{X}\right) \rightarrow A(\mathcal{A})$ is injective for every $X \in L$.
5. Show that the atomic complex of L (whose simplices are sets of atoms whose join not equal to 1_{L}) is homotopy equivalent to the flag complex of $L-\left\{0_{L}, 1_{L}\right\}$.
6. Let \mathcal{A} be the braid arrangement in $\mathbb{R}^{\ell+1}$:

$$
\mathcal{A}=\left\{\operatorname{ker}\left(x_{i}-x_{j}\right) \mid 1 \leq i<j \leq \ell+1\right\} .
$$

Find $T:=T(\mathcal{A})$ and $\mu(T)$ when $\ell=3$. (Remark. If you set

$$
x=x_{1}-x_{2}, \quad y=x_{1}-x_{3}, \quad z=x_{1}-x_{4}
$$

then $\mathcal{A}=\{\operatorname{ker}(x), \operatorname{ker}(y), \operatorname{ker}(z), \operatorname{ker}(x-y), \operatorname{ker}(y-z), \operatorname{ker}(x-z)\}$
7. Prove that $W(\mathcal{A})$ is a finite reflection group if \mathcal{A} is a reflection arrangement.
8. Which is the more obvious?
(a) $\mathcal{A}(W(\mathcal{A}))=\mathcal{A}$ for any reflection arrangement \mathcal{A},
(b) $W(\mathcal{A}(W))=W$ for any finite reflection group W

Prove the more obvious one and discuss the other one.
9. Let $\mathcal{A}=A_{\ell}$.
(a) Show that \mathcal{A} is a reflection arrangement.
(b) Find $|\mathcal{A}|$ and $|W(\mathcal{A})|$.
(c) Describe the group $W(\mathcal{A})$ or find a group isomorphic to $W(\mathcal{A})$.
10. Let $\mathcal{A}=B_{\ell}$.
(a) Show that \mathcal{A} is a reflection arrangement.
(b) Find $|\mathcal{A}|$ and $|W(\mathcal{A})|$.
(c) Describe the group $W(\mathcal{A})$ or find a group isomorphic to $W(\mathcal{A})$.
11. Let $\mathcal{A}=D_{\ell}$.
(a) Show that \mathcal{A} is a reflection arrangement.
(b) Find $|\mathcal{A}|$ and $|W(\mathcal{A})|$.
(c) Describe the group $W(\mathcal{A})$ or find a group isomorphic to $W(\mathcal{A})$.
12. Find a system of simple roots and the Coxeter diagram of B_{3}.
13. Let \mathcal{A} be a reflection arrangement. Show $|\mu(X)|=|\{w \in W \mid \operatorname{Fix}(w)=X\}|$ for $X \in L(\mathcal{A})$.
14. Let V be an ℓ-dimensional vector space with a basis $e_{i}(1 \leq i \leq \ell)$. Define the inner product on V by

$$
\left(e_{i}, e_{i}\right)=4 / 9, \quad\left(e_{i}, e_{j}\right)=-1 / 18(i \neq j)
$$

Let

$$
\begin{aligned}
& \mathcal{A}_{\ell}=\left\{\operatorname{ker}\left(x_{i}-x_{j}\right)(1 \leq i<j \leq \ell),\right. \\
& \\
& \quad \operatorname{ker}\left(x_{i}+x_{j}+x_{k}\right)(1 \leq i<j<k \leq \ell), \\
& \\
& \left.\operatorname{ker}\left(x_{i_{1}}+x_{i_{2}}+x_{i_{3}}+x_{i_{4}}+x_{i_{5}}+x_{i_{6}}\right)\left(1 \leq i_{1}<i_{2}<i_{3}<i_{4}<i_{5}<i_{6} \leq \ell\right)\right\} .
\end{aligned}
$$

It is known that $\Delta:=\left\{e_{i}-e_{i+1}(1 \leq i<\ell), e_{\ell-2}+e_{\ell-1}+e_{\ell}\right\}$ is a system of simple roots. Let $E_{6}=\mathcal{A}_{6}$ and $E_{7}=\mathcal{A}_{7}$.
(a) Find $\left|E_{6}\right|$ and $\left|E_{7}\right|$.
(b) Find the Coxeter diagrams of E_{6} and E_{7}.
(c) Show E_{6} and E_{7} are reflection arrangement.

