\qquad
(1) (6 points) Consider the polynomial

$$
f(x)=4 x^{4}+8 x^{3}-7 x^{2}-11 x+6
$$

(a) What are the rational roots of f allowed by the Rational Root Test? [List all the possibilities.]
(b) Use the above information to factor f as a product of irreducible polynomials.
(2) (4 points) Use Eisenstein's Criterion to show that $\sqrt{10}$ is irrational.
[Indicate which polynomial and which prime is used, and how the Criterion applies.]
(3) (5 points) Use Eisenstein's Criterion to show that the following polynomial is irreducible in $\mathbb{Q}[x]$.
[Indicate which prime is used, and how the Criterion applies. You will need to perform a preliminary change of variable, of the form $x \mapsto x+c$, for some suitable constant c.]

$$
f(x)=x^{4}-x^{3}+x^{2}-x+1
$$

(4) (5 points) Show that the following polynomial $f(x)$ is irreducible in $\mathbb{Q}[x]$, by finding a prime p so that $f(x)$ is irreducible in $\mathbb{Z}_{p}[x]$.

$$
f(x)=x^{4}+4 x^{3}+8 x^{2}+3 x+5
$$

