\qquad

QUIZ 2

(1) (4 points) List all polynomials of degree at most 2 in $\mathbb{Z}_{2}[x]$.
(2) (6 points) Let R be a commutative ring with unity $1_{R} \neq 0_{R}$. Which of the following subsets in $R[x]$ are subrings of $R[x]$? (Justify your answer, briefly.)
(a) All polynomials with constant term 1_{R}.
(b) All polynomials with constant term 0_{R}.
(c) All polynomials of the form $a_{0}+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}$.
(d) All polynomials of degree at most 2 .
(3) (10 points) Consider the following polynomials in $\mathbb{Q}[x]$:

$$
f=x^{4}+4 x^{3}+x^{2}-8 x-6, \quad g=x^{2}+x-6 .
$$

(a) Use the Division Algorithm to find the quotient q and the remainder r of the division of f by g.
(b) Use the Euclidean Algorithm to compute the greatest common divisor of f and g.

