\qquad

FINAL EXAM

(1) (12 points) Consider the ring

$$
R=\mathbb{Z}_{2} \times \mathbb{Z}_{4}=\{(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)\}
$$

with usual addition and multiplication.
(a) List all the invertible elements in R.
(b) List all the zero-divisors in R.
(c) List all the idempotents in R.
(d) Is R a commutative ring with unit?
(e) Is R a field?
(f) Let $S=\{(0,0),(0,1),(1,0),(1,1)\}$. Is S a subring of R ?
(g) Let $S=\{(0,0),(0,1),(0,2),(0,3)\}$. Is S a subring of R ?
(2) (10 points)
(a) Find the remainder when $f(x)=x^{6}-3 x^{4}+5$ is divided by $g(x)=x-2$ in $\mathbb{Q}[x]$.
(b) For what value(s) of k is $x+1$ a factor of $x^{4}+2 x^{3}+3 x^{2}+k x+4$ in $\mathbb{Z}_{7}[x]$?
(3) (9 points) Let $f(x)=x^{3}+2 x^{2}+x+1$, viewed as a polynomial in $\mathbb{Z}_{p}[x]$. Determine whether f is irreducible when:
(a) $p=2$
(b) $p=3$
(c) $p=5$
(4) (10 points) Consider the polynomial

$$
f(x)=2 x^{4}+3 x^{3}-3 x^{2}-5 x-6
$$

(a) What are all the rational roots of f allowed by the Rational Root Test?
(b) Use the above information to factor f as a product of irreducible polynomials (over \mathbb{Q}).
(5) (12 points) Consider the polynomial

$$
f(x)=x^{5}-5 x^{4}+25 x^{2}-10 x+5
$$

(a) Show that f is irreducible in $\mathbb{Q}[x]$.
(b) Show that the congruence-class ring $K=\mathbb{Q}[x] /(f(x))$ is a field.
(c) Is the extension $\mathbb{Q} \subset K$ algebraic? Why, or why not?
(d) Find a basis for K, viewed as a vector space over \mathbb{Q}.
(e) Compute $[K: \mathbb{Q}]$.
(6) (12 points) Consider the field \mathbb{R}, viewed as a vector space over \mathbb{Q}.
(a) Is the subset $\{1, \sqrt{3}\}$ linearly independent (over \mathbb{Q})?
(b) Is $\sqrt{5}$ a linear combination of 1 and $\sqrt{3}$ (over \mathbb{Q})?
(c) Does the subset $\{1, \sqrt{3}\}$ span \mathbb{R} (as a vector space over \mathbb{Q})?
(d) Find the minimal polynomial of $\sqrt{1+\sqrt{5}}$ over \mathbb{Q}.
(7) (9 points) Let $F \subset K$ be an extension of fields. Let $u \in K$ and $c \in F$.
(a) Suppose u is algebraic over F. Show that $u+c$ is algebraic over F.
(b) Suppose u is transcendental over F. Show that $u+c$ is transcendental over F.
(c) Show that $F(u)=F(u+c)$.
(8) (12 points) Let $p(x)=x^{2}+b x+c$ be an irreducible, monic, quadratic polynomial in $\mathbb{Q}[x]$, and let $K=\mathbb{Q}[x] /(p(x))$.
(a) Show that K contains all the roots of $p(x)$.
(b) Is K a splitting field for p ? Why, or why not?
(c) Is the extension $\mathbb{Q} \subset K$ a normal extension? Why, or why not?
(d) Is the extension $\mathbb{Q} \subset K$ a Galois extension? Why, or why not?
(e) What is the Galois group of p ?
(9) (14 points) Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{5})$ be the splitting field of $f(x)=\left(x^{2}-2\right)\left(x^{2}-5\right)$ over \mathbb{Q}.
(a) Find a basis of K, viewed as a vector space over \mathbb{Q}.
(b) What is a typical element of K, expressed in terms of this basis?
(c) What are the Galois automorphisms of the extension $\mathbb{Q} \subset K$? List them all, by indicating how they act on the basis found above (or, on the typical element of K).
(d) What is the Galois group $\operatorname{Gal}_{\mathbb{Q}}(K)$?
(e) List all the subgroups of $\operatorname{Gal}_{\mathbb{Q}}(K)$.
(f) For each such subgroup H, indicate the corresponding fixed field E_{H}.
(g) Put together all this information by drawing a diagram of the Galois correspondence for the extension $\mathbb{Q} \subset K$.

