MTH U565

Prof. Alexandru Suciu TOPOLOGY

MIDTERM EXAM

- **1.** Let $f: X \to Y$ be a continuous surjection, and suppose f is a closed map (i.e., it takes closed sets in X to closed sets in Y). Let $g: Y \to Z$ be a function so that $g \circ f: X \to Z$ is continuous. Show that g is continuous.
- **2.** Let X be a space. Show that X is Hausdorff if, and only if, the diagonal $\Delta := \{(x, x) \mid x \in X\}$ is a closed subspace of $X \times X$.
- **3.** Let $X = [0, 1]/(\frac{1}{4}, \frac{3}{4})$ be the quotient space of the unit interval, where the open interval $(\frac{1}{4}, \frac{3}{4})$ is identified to a single point. Show that X is not a Hausdorff space.
- **4.** Let X be a Hausdorff space. Suppose A is a compact subspace, and $x \in X \setminus A$. Show that there exist disjoint open sets U and V containing A and x, respectively.
- **5.** Let $p: X \to Y$ be a quotient map. Suppose Y is connected, and, for each $y \in Y$, the subspace $p^{-1}(\{y\})$ is connected. Show that X is connected.
- 6. Let X be a discrete topological space, and let ~ be an equivalence relation on X. Prove that X/\sim , endowed with the quotient topology, is also a discrete space.