\qquad

1. 8 points Let A, B, C be three 4×4 matrices, with $\operatorname{det} A=2$, $\operatorname{det} B=-1, \operatorname{det} C=0$.
(a) In the following, circle the correct answer. Provide a (short) explanation in each case.

- Is A invertible? Yes No Maybe
- Is B invertible? Yes No Maybe
- Is C invertible? Yes No Maybe
- Is A orthogonal? Yes No Maybe
- Is B orthogonal? Yes No Maybe
- Is C orthogonal? Yes No Maybe
(b) Compute $\operatorname{det}\left(A \cdot B \cdot A^{\top}\right)$.
(c) Compute $\operatorname{det}\left(3 A^{2}\right)$.

2. 8 points Let $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Find a basis for each eigenspace of A.
(c) Find a diagonal matrix D and an invertible matrix S such that $A=S \cdot D \cdot S^{-1}$. (You need not compute S^{-1}.)
3. 8 points A 2×2 matrix A has eigenvalues $\lambda_{1}=3, \lambda_{2}=-4$.
(a) What is the characteristic polynomial of A ?
(b) Compute $\operatorname{tr}(A)$.
(c) Compute $\operatorname{det}(A)$.
(d) Compute $\operatorname{det}\left(4 I_{2}+A\right)$.
(e) Is A diagonalizable? If yes, compute its diagonalization D. If not, explain why not.
(f) Let $B=\left[\begin{array}{cc}1 & 3 \\ 3 & -2\end{array}\right]$. Is B similar to A ? Explain why, or why not.
(g) Let $C=\left[\begin{array}{cc}5 & 6 \\ -3 & -6\end{array}\right]$. Is C similar to A ? Explain why, or why not.
(h) Let $M=\left[\begin{array}{cc}3 & 2 \\ 3 & -2\end{array}\right]$. Is M similar to A ? Explain why, or why not.
4. 6 points A 2×2 matrix A matrix has eigenvalues $\lambda_{1}=6$ and $\lambda_{2}=7$, with corresponding eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}5 \\ 9\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$. Find A.
