Instructor: Prof. A. Suciu		Name:			
MTH U371	LIN	EAR A	LGEBRA	Spring 2005	
$QUIZ \ 5$					
1. 8 points Let A, B, C be three 4×4 matrices, with det $A = 2$, det $B = -1$, det $C = 0$.					
(a) In the following, circle the correct answer. Provide a (short) explanation in each case.					
• Is A invertible?	Yes	No	Maybe		
• Is <i>B</i> invertible?	Yes	No	Maybe		
• Is C invertible?	Yes	No	Maybe		
• Is A orthogonal?	Yes	No	Maybe		
• Is <i>B</i> orthogonal?	Yes	No	Maybe		
• Is C orthogonal?	Yes	No	Maybe		

(b) Compute det $(A \cdot B \cdot A^{\top})$.

(c) Compute det $(3A^2)$.

2. 8 points Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
.

(a) Find the eigenvalues of A.

(b) Find a basis for each eigenspace of A.

(c) Find a diagonal matrix D and an invertible matrix S such that $A = S \cdot D \cdot S^{-1}$. (You need not compute S^{-1} .)

- **3.** 8 points A 2 × 2 matrix A has eigenvalues $\lambda_1 = 3, \lambda_2 = -4$.
 - (a) What is the characteristic polynomial of A?
 - (b) Compute $\operatorname{tr}(A)$.
 - (c) Compute $\det(A)$.
 - (d) Compute det $(4I_2 + A)$.
 - (e) Is A diagonalizable? If yes, compute its diagonalization D. If not, explain why not.

(f) Let
$$B = \begin{bmatrix} 1 & 3 \\ 3 & -2 \end{bmatrix}$$
. Is B similar to A? Explain why, or why not.

(g) Let
$$C = \begin{bmatrix} 5 & 6 \\ -3 & -6 \end{bmatrix}$$
. Is C similar to A? Explain why, or why not

(h) Let $M = \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix}$. Is M similar to A? Explain why, or why not.

4. 6 points A 2 × 2 matrix A matrix has eigenvalues $\lambda_1 = 6$ and $\lambda_2 = 7$, with corresponding eigenvectors $\vec{v}_1 = \begin{bmatrix} 5\\9 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 2\\4 \end{bmatrix}$. Find A.