Prof. Alexandru Suciu TOPOLOGY

MATH 4565
Fall 2022
MIDTERM EXAM

1. Let \mathbb{Z} be the set of integers, and let \mathcal{B} be the set of all subsets of \mathbb{Z} of the form $\{n\}$ with n odd, or $\{n-1, n, n+1\}$ with n even.
(a) Show that \mathcal{B} is a basis for a topology on \mathbb{Z}.
(b) Is \mathbb{Z} equipped with this topology a Hausdorff space?
(c) Is \mathbb{Z} equipped with this topology a connected space?
2. Let $A \subset \mathbb{R}$ be the set of integers, viewed as a subspace of the reals, and let X be the quotient space \mathbb{R} / A obtained by collapsing A to a point. Show that $X \cong \bigvee_{\mathbb{Z}} S^{1}$; that is, X is homeomorphic to a wedge sum of countably infinitely many circles.
3. Let $q: X \rightarrow Y$ be a quotient map, let U be an open subset of X, and let $\left.q\right|_{U}: U \rightarrow$ $q(U)$ be the restriction of q to U (and co-restricted to its image).
(a) Suppose U is a saturated open subset of X. Show that $\left.q\right|_{U}: U \rightarrow q(U)$ is again a quotient map.
(b) Give an example showing that the saturation hypothesis is necessary.
4. Let $q: X \rightarrow Y$ be a quotient map. Suppose Y is connected, and, for each $y \in Y$, the subspace $q^{-1}(\{y\})$ is connected. Show that X is also connected.
5. Let $S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}$ be the unit sphere in \mathbb{R}^{n+1}, with the topology induced from the standard (Euclidean) topology on \mathbb{R}^{n+1}, for $n \geq 1$. Also let $\mathbb{R P}^{n}=S^{n} / \sim$ be the projective n-space, obtained as the quotient space of S^{n} by the equivalence relation $x \sim y$ if $y=x$ or $y=-x$.
(a) Show that S^{n} is path-connected, by constructing for any two points $x, y \in S^{n}$ an explicit path connecting them.
(b) Show that S^{n} is locally path-connected.
(c) Show that $\mathbb{R} \mathbb{P}^{n}$ is path-connected and locally path-connected.
6. Let X be a topological space, and let A be a subset of X which is both open and closed. Show that A is a union of connected components of X.
7. Let X be a locally path-connected space. Let U be an open, connected subset of X. Show that U is path-connected.
8. Prove or disprove the following:
(a) If X and Y are path-connected, then $X \times Y$ is path-connected.
(b) If $A \subset X$ is path-connected, then \bar{A} is path-connected.
(c) If X is locally path-connected, and $A \subset X$, then A is locally path-connected.
(d) If X is path-connected, and $f: X \rightarrow Y$ is continuous, then $f(X)$ is pathconnected.
(e) If X is locally path-connected, and $f: X \rightarrow Y$ is continuous, then $f(X)$ is locally path-connected.
