Prof. Alexandru Suciu TOPOLOGY

Fall 2021

MIDTERM EXAM

- **1.** Let \mathbb{Z} be the set of integers. An arithmetic progression is a subset of the form $A_{a,b} = \{a + nb \mid n \in \mathbb{Z}\}$, with a,b integers and $b \neq 0$.
 - (a) Show that the collection of arithmetic progressions, $\mathcal{A} = \{A_{a,b} \mid a, b \in \mathbb{Z}, b \neq 0\}$, is a basis for a topology on \mathbb{Z} .
 - (b) Is \mathbb{Z} endowed with this topology a Hausdorff space?
 - (c) Is \mathbb{Z} endowed with this topology a connected space?
- **2.** Let A be a subspace of a topological space X. A retraction of X onto A is a continuous map $r: X \to A$ such that r(a) = a for all $a \in A$. If such a map exists, we say that A is a retract of X.
 - (a) Prove the following: If X is Hausdorff and A is a retract of X, then A is closed.
 - (b) By the above, the open interval (0,1) is *not* a retract of the real line \mathbb{R} . Nevertheless, show that the closed interval [0,1] is a retract of \mathbb{R} .
- **3.** Let $f: X \to Y$ and $g: X \to Y$ be two continuous maps. Suppose Y is a Hausdorff space, and that there is a dense subset $D \subset X$ such that f(x) = g(x) for all $x \in D$. Show that f(x) = g(x) for all $x \in X$.
- **4.** Let $A \subset \mathbb{R}$ be the set of integers, and let X be the quotient space \mathbb{R}/A obtained by collapsing A to a point. Show that $X \cong \bigvee_{\mathbb{Z}} S^1$; that is, X is homeomorphic to a wedge sum of countably infinitely many circles.
- **5.** (a) Let $X = \{(x, y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \text{ or } y \in \mathbb{Q} \}$ be the set of all points in the plane with at least one rational coordinate. Show that X, with the subspace topology, is a path-connected space.
 - (b) Let U be an *open*, connected subset of \mathbb{R}^2 . Show that U is path-connected.
- **6.** Show that \mathbb{R}^n , for n>1, is not homeomorphic to any open subset of \mathbb{R} .

- 7. Let $f: X \to X$ be a continuous map. An element $x \in X$ is called a *fixed point* of f is f(x) = x. In each of the following situations, determine whether f must have a fixed point (in which case explain why), or does not necessarily have a fixed point (in which case give an example of a fixed-point-free map $f: X \to X$).
 - (a) X = [0, 1].
 - (b) X = [0, 1).
 - (c) X = (0, 1).
- **8.** Prove or disprove the following:
 - (a) If X and Y are path-connected, then $X \times Y$ is path-connected.
 - (b) If $A \subset X$ is path-connected, then \overline{A} is path-connected.
 - (c) If X is locally path-connected, and $A \subset X$, then A is locally path-connected.
 - (d) If X is path-connected, and $f: X \to Y$ is continuous, then f(X) is path-connected.
 - (e) If X is locally path-connected, and $f: X \to Y$ is continuous, then f(X) is locally path-connected.