MIDTERM EXAM

1. Let \mathbb{Z} be the set of integers. An arithmetic progression is a subset of the form $A_{a, b}=\{a+n b \mid n \in \mathbb{Z}\}$, with a, b integers and $b \neq 0$.
(a) Show that the collection of arithmetic progressions, $\mathcal{A}=\left\{A_{a, b} \mid a, b \in \mathbb{Z}, b \neq 0\right\}$, is a basis for a topology on \mathbb{Z}.
(b) Is \mathbb{Z} endowed with this topology a Hausdorff space?
(c) Is \mathbb{Z} endowed with this topology a connected space?
2. Let A be a subspace of a topological space X. A retraction of X onto A is a continuous map $r: X \rightarrow A$ such that $r(a)=a$ for all $a \in A$. If such a map exists, we say that A is a retract of X.
(a) Prove the following: If X is Hausdorff and A is a retract of X, then A is closed.
(b) By the above, the open interval $(0,1)$ is not a retract of the real line \mathbb{R}. Nevertheless, show that the closed interval $[0,1]$ is a retract of \mathbb{R}.
3. Let $f: X \rightarrow Y$ and $g: X \rightarrow Y$ be two continuous maps. Suppose Y is a Hausdorff space, and that there is a dense subset $D \subset X$ such that $f(x)=g(x)$ for all $x \in D$. Show that $f(x)=g(x)$ for all $x \in X$.
4. Let $A \subset \mathbb{R}$ be the set of integers, and let X be the quotient space \mathbb{R} / A obtained by collapsing A to a point. Show that $X \cong \bigvee_{\mathbb{Z}} S^{1}$; that is, X is homeomorphic to a wedge sum of countably infinitely many circles.
5. (a) Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid x \in \mathbb{Q}\right.$ or $\left.y \in \mathbb{Q}\right\}$ be the set of all points in the plane with at least one rational coordinate. Show that X, with the subspace topology, is a path-connected space.
(b) Let U be an open, connected subset of \mathbb{R}^{2}. Show that U is path-connected.
6. Show that \mathbb{R}^{n}, for $n>1$, is not homeomorphic to any open subset of \mathbb{R}.
7. Let $f: X \rightarrow X$ be a continuous map. An element $x \in X$ is called a fixed point of f is $f(x)=x$. In each of the following situations, determine whether f must have a fixed point (in which case explain why), or does not necessarily have a fixed point (in which case give an example of a fixed-point-free map $f: X \rightarrow X$).
(a) $X=[0,1]$.
(b) $X=[0,1)$.
(c) $X=(0,1)$.
8. Prove or disprove the following:
(a) If X and Y are path-connected, then $X \times Y$ is path-connected.
(b) If $A \subset X$ is path-connected, then \bar{A} is path-connected.
(c) If X is locally path-connected, and $A \subset X$, then A is locally path-connected.
(d) If X is path-connected, and $f: X \rightarrow Y$ is continuous, then $f(X)$ is pathconnected.
(e) If X is locally path-connected, and $f: X \rightarrow Y$ is continuous, then $f(X)$ is locally path-connected.
