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Homotopy

1. HOMOTOPIC FUNCTIONS

Two continuous functions from one topological space to another are called homo-
topic if one can be “continuously deformed” into the other, such a deformation being
called a homotopy between the two functions. More precisely, we have the following
definition.

Definition 1.1. Let X, Y be topological spaces, and f,g: X — Y continuous maps.

A homotopy from f to g is a continuous function F': X x [0,1] — Y satisfying
F(z,0) = f(z) and F(z,1) = g(z), for all z € X.

If such a homotopy exists, we say that f is homotopic to g, and denote this by f ~ g.

If f is homotopic to a constant map, i.e., if f =~ const,, for some y € Y, then we
say that f is nullhomotopic.

Example 1.2. Let f,g: R — R any two continuous, real functions. Then f ~ g.
To see why this is the case, define a function F': R x [0,1] — R by

F(a,t) = (1=1t)- f(x) +1-g(x).

Clearly, F' is continuous, being a composite of continuous functions. Moreover,

F(2,0) = (1-0) f(z)+0-g(z) = f(z), and F(z,1) = (1-1)- f(z) +1-g(z) = g(z).
Thus, F' is a homotopy between f and g.
In particular, this shows that any continuous map f: R — R is nullhomotopic.

This example can be generalized. First, we need a definition.

Definition 1.3. A subset A C R” is said to be conver if, given any two points
x,y € A, the straight line segment from x to y is contained in A. In other words,

(1—1t)x +ty € A, for every t € [0, 1].
Proposition 1.4. Let A be a convex subset of R, endowed with the subspace topology,

and let X be any topological space. Then any two continuous maps f,qg: X — A are
homotopic.

Proof. Use the same homotopy as in Example 1.2. Things work out, due to the
convexity assumption. 0

Let X, Y be two topological spaces, and let Map(X,Y") be the set of all continuous
maps from X to Y.
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Theorem 1.5. Homotopy is an equivalence relation on Map(X,Y).

Proof. We need to verify that ~ is reflexive, symmetric, and transitive.

Reflezivity (f ~ f). The map F: X x I — X, F(x,t) = f(z) is a homotopy from f
to f.

Symmetry (f ~ g = g ~ f). Suppose F': X x [ — X is a homotopy from f to g.
Then the map G: X x [ — X,

G(z,t) = F(z,1 —1)
is a homotopy from ¢ to f.

Transitivity (f ~ g & g ~h = f ~ h). Suppose F': X x I — X is a homotopy from
ftogand G: X x I — X is a homotopy from g to h. Then the map H: X x I — X,

F(x,2t if 0 <t<1/2
H(x,t) = (w, 2t) 1 <t<1/2
Gz, 2t —1) if1/2<t<1.
is a homotopy from f to h, as can be verified, using the Pasting Lemma. O

We shall denote the homotopy class of a continuous map f: X — Y by [f]. That
is to say:
[f] ={g € Map(X,Y) | g ~ f}.

Moreover, we shall denote set of homotopy classes of continuous maps from X to Y
as
[X,Y] = Map(X,Y)/ =

Example 1.6. From Example 1.2, we deduce that [R,R] = {[constg|}. More gener-
ally, let X be any topological space, and let A be a (non-empty) convex subset of R”.
We then deduce from Proposition 1.4 that

[X, A] = {[const,|}, for some a € A.

Proposition 1.7. Let f, f': X — Y and g,q': Y — Z be continuous maps, and let
go f,g of': X — Z be the respective composite maps. If f ~ f' and g ~ ¢, then
gof=~golf.

Proof. Let F': X x I — Y be a homotopy between f and f' and G: Y x I — Z be a
homotopy between g and ¢’. Define a map H: X x I — Z by

H(z,t) = G(F(z,t),t).
Clearly, H is continuous. Moreover,
H(z,0) = G(F(z,0),0) = G(f(z),0)
H(z,1) = G(F(x,1),1) = G(f'(x),1) =
Thus, H is a homotopy between g o f and ¢’ o f'. 0

I
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As a consequence, composition of continuous maps defines a function
(X Y] x [V, Z] = [X, Z], ([f].]9]) = [go f].

2. HOMOTOPY EQUIVALENCES

Definition 2.1. Let f: X — Y be a continuous map. Then f is said to be homotopy
equivalence if there exists a continuous map ¢g: ¥ — X such that

fog~idy and go f ~idx.
The map ¢ in the above definition is said to be a homotopy inverse to f.

Remark 2.2. Every homeomorphism f: X — Y is a homotopy equivalence: simply
take g = f~!. The converse is far from true, in general.

The previous definition leads to a basic notion in algebraic topology.

Definition 2.3. Two spaces X and Y are said to be homotopy equivalent (written
X ~Y) if there is a homotopy equivalence f: X — Y.

Remark 2.4. By Remark 2.2,

X2Y = XY
But the converse is far from being true. For instance, R ~ {0}, but of course R 2 {0}
(since R is infinite, so there is not even a bijection from R to {0}).
Proposition 2.5. Homotopy equivalence is an equivalence relation (on topological
spaces).
Proof. We need to verify that ~ is reflexive, symmetric, and transitive.

Reflexivity (X ~ X ). The identity map idx: X — X is a homeomorphism, and thus
a homotopy equivalence.

Symmetry (X ~Y =Y ~ X ). Suppose f: X — Y is a homotopy equivalence, with
homotopy inverse g. Then ¢g: Y — X is a homotopy equivalence, with homotopy
inverse f.

Transitivity (X ~Y &Y ~ Z = X ~ Z). Suppose f: X — Y is a homotopy
equivalence, with homotopy inverse g, and h: Y — Z is a homotopy equivalence, with
homotopy inverse k. Using Proposition 1.7 (and the associativity of compositions)
the following assertion is readily verified: ho f: X — Z is a homotopy equivalence,
with homotopy inverse g o k. 0

Equivalence classes under ~ are called homotopy types. The simplest homotopy
type is that of a singleton. This merits a definition.

Definition 2.6. A topological space X is said to be contractible if X is homotopy
equivalent to a point, i.e., X ~ {x}.
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