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Homotopy

1. Homotopic functions

Two continuous functions from one topological space to another are called homo-
topic if one can be “continuously deformed” into the other, such a deformation being
called a homotopy between the two functions. More precisely, we have the following
definition.

Definition 1.1. Let X, Y be topological spaces, and f, g : X → Y continuous maps.
A homotopy from f to g is a continuous function F : X × [0, 1]→ Y satisfying

F (x, 0) = f(x) and F (x, 1) = g(x), for all x ∈ X.

If such a homotopy exists, we say that f is homotopic to g, and denote this by f ' g.

If f is homotopic to a constant map, i.e., if f ' consty, for some y ∈ Y , then we
say that f is nullhomotopic.

Example 1.2. Let f, g : R→ R any two continuous, real functions. Then f ' g.
To see why this is the case, define a function F : R× [0, 1]→ R by

F (x, t) = (1− t) · f(x) + t · g(x).

Clearly, F is continuous, being a composite of continuous functions. Moreover,
F (x, 0) = (1−0) ·f(x) + 0 · g(x) = f(x), and F (x, 1) = (1−1) ·f(x) + 1 · g(x) = g(x).
Thus, F is a homotopy between f and g.

In particular, this shows that any continuous map f : R→ R is nullhomotopic.

This example can be generalized. First, we need a definition.

Definition 1.3. A subset A ⊂ Rn is said to be convex if, given any two points
x, y ∈ A, the straight line segment from x to y is contained in A. In other words,

(1− t)x + ty ∈ A, for every t ∈ [0, 1].

Proposition 1.4. Let A be a convex subset of Rn, endowed with the subspace topology,
and let X be any topological space. Then any two continuous maps f, g : X → A are
homotopic.

Proof. Use the same homotopy as in Example 1.2. Things work out, due to the
convexity assumption. �

Let X, Y be two topological spaces, and let Map(X, Y ) be the set of all continuous
maps from X to Y .
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Theorem 1.5. Homotopy is an equivalence relation on Map(X, Y ).

Proof. We need to verify that ' is reflexive, symmetric, and transitive.

Reflexivity (f ' f). The map F : X × I → X, F (x, t) = f(x) is a homotopy from f
to f .

Symmetry (f ' g ⇒ g ' f). Suppose F : X × I → X is a homotopy from f to g.
Then the map G : X × I → X,

G(x, t) = F (x, 1− t)

is a homotopy from g to f .

Transitivity (f ' g & g ' h⇒ f ' h). Suppose F : X × I → X is a homotopy from
f to g and G : X× I → X is a homotopy from g to h. Then the map H : X× I → X,

H(x, t) =

{
F (x, 2t) if 0 ≤ t ≤ 1/2,

G(x, 2t− 1) if 1/2 ≤ t ≤ 1.

is a homotopy from f to h, as can be verified, using the Pasting Lemma. �

We shall denote the homotopy class of a continuous map f : X → Y by [f ]. That
is to say:

[f ] = {g ∈ Map(X, Y ) | g ' f}.
Moreover, we shall denote set of homotopy classes of continuous maps from X to Y
as

[X, Y ] = Map(X, Y )/ ' .

Example 1.6. From Example 1.2, we deduce that [R,R] = {[const0]}. More gener-
ally, let X be any topological space, and let A be a (non-empty) convex subset of Rn.
We then deduce from Proposition 1.4 that

[X,A] = {[consta]}, for some a ∈ A.

Proposition 1.7. Let f, f ′ : X → Y and g, g′ : Y → Z be continuous maps, and let
g ◦ f, g′ ◦ f ′ : X → Z be the respective composite maps. If f ' f ′ and g ' g′, then
g ◦ f ' g′ ◦ f ′.

Proof. Let F : X × I → Y be a homotopy between f and f ′ and G : Y × I → Z be a
homotopy between g and g′. Define a map H : X × I → Z by

H(x, t) = G(F (x, t), t).

Clearly, H is continuous. Moreover,

H(x, 0) = G(F (x, 0), 0) = G(f(x), 0) = g(f(x))

H(x, 1) = G(F (x, 1), 1) = G(f ′(x), 1) = g′(f ′(x)).

Thus, H is a homotopy between g ◦ f and g′ ◦ f ′. �
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As a consequence, composition of continuous maps defines a function

[X, Y ]× [Y, Z]→ [X,Z], ([f ], [g]) 7→ [g ◦ f ].

2. Homotopy equivalences

Definition 2.1. Let f : X → Y be a continuous map. Then f is said to be homotopy
equivalence if there exists a continuous map g : Y → X such that

f ◦ g ' idY and g ◦ f ' idX .

The map g in the above definition is said to be a homotopy inverse to f .

Remark 2.2. Every homeomorphism f : X → Y is a homotopy equivalence: simply
take g = f−1. The converse is far from true, in general.

The previous definition leads to a basic notion in algebraic topology.

Definition 2.3. Two spaces X and Y are said to be homotopy equivalent (written
X ' Y ) if there is a homotopy equivalence f : X → Y .

Remark 2.4. By Remark 2.2,

X ∼= Y =⇒ X ' Y.

But the converse is far from being true. For instance, R ' {0}, but of course R 6∼= {0}
(since R is infinite, so there is not even a bijection from R to {0}).
Proposition 2.5. Homotopy equivalence is an equivalence relation (on topological
spaces).

Proof. We need to verify that ' is reflexive, symmetric, and transitive.

Reflexivity (X ' X). The identity map idX : X → X is a homeomorphism, and thus
a homotopy equivalence.

Symmetry (X ' Y ⇒ Y ' X). Suppose f : X → Y is a homotopy equivalence, with
homotopy inverse g. Then g : Y → X is a homotopy equivalence, with homotopy
inverse f .

Transitivity (X ' Y & Y ' Z ⇒ X ' Z). Suppose f : X → Y is a homotopy
equivalence, with homotopy inverse g, and h : Y → Z is a homotopy equivalence, with
homotopy inverse k. Using Proposition 1.7 (and the associativity of compositions)
the following assertion is readily verified: h ◦ f : X → Z is a homotopy equivalence,
with homotopy inverse g ◦ k. �

Equivalence classes under ' are called homotopy types. The simplest homotopy
type is that of a singleton. This merits a definition.

Definition 2.6. A topological space X is said to be contractible if X is homotopy
equivalent to a point, i.e., X ' {x0}.
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