Homotopy

1. Homotopic functions

Two continuous functions from one topological space to another are called *homo-topic* if one can be "continuously deformed" into the other, such a deformation being called a *homotopy* between the two functions. More precisely, we have the following definition.

Definition 1.1. Let X, Y be topological spaces, and $f, g: X \to Y$ continuous maps. A homotopy from f to g is a continuous function $F: X \times [0, 1] \to Y$ satisfying

$$F(x,0) = f(x)$$
 and $F(x,1) = g(x)$, for all $x \in X$.

If such a homotopy exists, we say that f is *homotopic* to g, and denote this by $f \simeq g$.

If f is homotopic to a constant map, i.e., if $f \simeq \text{const}_y$, for some $y \in Y$, then we say that f is *nullhomotopic*.

Example 1.2. Let $f, g: \mathbb{R} \to \mathbb{R}$ any two continuous, real functions. Then $f \simeq g$. To see why this is the case, define a function $F: \mathbb{R} \times [0,1] \to \mathbb{R}$ by

$$F(x,t) = (1-t) \cdot f(x) + t \cdot g(x).$$

Clearly, F is continuous, being a composite of continuous functions. Moreover, $F(x,0) = (1-0) \cdot f(x) + 0 \cdot g(x) = f(x)$, and $F(x,1) = (1-1) \cdot f(x) + 1 \cdot g(x) = g(x)$. Thus, F is a homotopy between f and g.

In particular, this shows that any continuous map $f \colon \mathbb{R} \to \mathbb{R}$ is nullhomotopic.

This example can be generalized. First, we need a definition.

Definition 1.3. A subset $A \subset \mathbb{R}^n$ is said to be *convex* if, given any two points $x, y \in A$, the straight line segment from x to y is contained in A. In other words,

 $(1-t)x + ty \in A$, for every $t \in [0, 1]$.

Proposition 1.4. Let A be a convex subset of \mathbb{R}^n , endowed with the subspace topology, and let X be any topological space. Then any two continuous maps $f, g: X \to A$ are homotopic.

Proof. Use the same homotopy as in Example 1.2. Things work out, due to the convexity assumption. \Box

Let X, Y be two topological spaces, and let Map(X, Y) be the set of all continuous maps from X to Y.

Theorem 1.5. Homotopy is an equivalence relation on Map(X, Y).

Proof. We need to verify that \simeq is reflexive, symmetric, and transitive.

Reflexivity $(f \simeq f)$. The map $F: X \times I \to X$, F(x,t) = f(x) is a homotopy from f to f.

Symmetry $(f \simeq g \Rightarrow g \simeq f)$. Suppose $F: X \times I \to X$ is a homotopy from f to g. Then the map $G: X \times I \to X$,

$$G(x,t) = F(x,1-t)$$

is a homotopy from g to f.

Transitivity $(f \simeq g \& g \simeq h \Rightarrow f \simeq h)$. Suppose $F: X \times I \to X$ is a homotopy from f to g and $G: X \times I \to X$ is a homotopy from g to h. Then the map $H: X \times I \to X$,

$$H(x,t) = \begin{cases} F(x,2t) & \text{if } 0 \le t \le 1/2, \\ G(x,2t-1) & \text{if } 1/2 \le t \le 1. \end{cases}$$

is a homotopy from f to h, as can be verified, using the Pasting Lemma.

We shall denote the homotopy class of a continuous map $f: X \to Y$ by [f]. That is to say:

$$[f] = \{g \in \operatorname{Map}(X, Y) \mid g \simeq f\}.$$

Moreover, we shall denote set of homotopy classes of continuous maps from X to Y as

$$[X,Y] = \operatorname{Map}(X,Y)/\simeq .$$

Example 1.6. From Example 1.2, we deduce that $[\mathbb{R}, \mathbb{R}] = \{[\text{const}_0]\}$. More generally, let X be any topological space, and let A be a (non-empty) convex subset of \mathbb{R}^n . We then deduce from Proposition 1.4 that

$$[X, A] = \{ [const_a] \}, \text{ for some } a \in A.$$

Proposition 1.7. Let $f, f': X \to Y$ and $g, g': Y \to Z$ be continuous maps, and let $g \circ f, g' \circ f': X \to Z$ be the respective composite maps. If $f \simeq f'$ and $g \simeq g'$, then $g \circ f \simeq g' \circ f'$.

Proof. Let $F: X \times I \to Y$ be a homotopy between f and f' and $G: Y \times I \to Z$ be a homotopy between g and g'. Define a map $H: X \times I \to Z$ by

$$H(x,t) = G(F(x,t),t).$$

Clearly, H is continuous. Moreover,

$$H(x,0) = G(F(x,0),0) = G(f(x),0) = g(f(x))$$

$$H(x,1) = G(F(x,1),1) = G(f'(x),1) = g'(f'(x)).$$

Thus, H is a homotopy between $g \circ f$ and $g' \circ f'$.

As a consequence, composition of continuous maps defines a function

$$[X,Y] \times [Y,Z] \to [X,Z], \quad ([f],[g]) \mapsto [g \circ f].$$

2. Homotopy equivalences

Definition 2.1. Let $f: X \to Y$ be a continuous map. Then f is said to be *homotopy* equivalence if there exists a continuous map $g: Y \to X$ such that

$$f \circ g \simeq \operatorname{id}_Y$$
 and $g \circ f \simeq \operatorname{id}_X$.

The map g in the above definition is said to be a *homotopy inverse* to f.

Remark 2.2. Every homeomorphism $f: X \to Y$ is a homotopy equivalence: simply take $g = f^{-1}$. The converse is far from true, in general.

The previous definition leads to a basic notion in algebraic topology.

Definition 2.3. Two spaces X and Y are said to be homotopy equivalent (written $X \simeq Y$) if there is a homotopy equivalence $f: X \to Y$.

Remark 2.4. By Remark 2.2,

$$X \cong Y \Longrightarrow X \simeq Y.$$

But the converse is far from being true. For instance, $\mathbb{R} \simeq \{0\}$, but of course $\mathbb{R} \not\cong \{0\}$ (since \mathbb{R} is infinite, so there is not even a bijection from \mathbb{R} to $\{0\}$).

Proposition 2.5. Homotopy equivalence is an equivalence relation (on topological spaces).

Proof. We need to verify that \simeq is reflexive, symmetric, and transitive.

Reflexivity $(X \simeq X)$. The identity map $id_X \colon X \to X$ is a homeomorphism, and thus a homotopy equivalence.

Symmetry $(X \simeq Y \Rightarrow Y \simeq X)$. Suppose $f: X \to Y$ is a homotopy equivalence, with homotopy inverse g. Then $g: Y \to X$ is a homotopy equivalence, with homotopy inverse f.

Transitivity $(X \simeq Y \& Y \simeq Z \Rightarrow X \simeq Z)$. Suppose $f: X \to Y$ is a homotopy equivalence, with homotopy inverse g, and $h: Y \to Z$ is a homotopy equivalence, with homotopy inverse k. Using Proposition 1.7 (and the associativity of compositions) the following assertion is readily verified: $h \circ f: X \to Z$ is a homotopy equivalence, with homotopy inverse $g \circ k$.

Equivalence classes under \simeq are called *homotopy types*. The simplest homotopy type is that of a singleton. This merits a definition.

Definition 2.6. A topological space X is said to be *contractible* if X is homotopy equivalent to a point, i.e., $X \simeq \{x_0\}$.