Prof. Alexandru Suciu TOPOLOGY

Fall 2021

Homotopy

1. Homotopic functions

Two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. More precisely, we have the following definition.

Definition 1.1. Let X, Y be topological spaces, and $f, g: X \rightarrow Y$ continuous maps. A homotopy from f to g is a continuous function $F: X \times[0,1] \rightarrow Y$ satisfying

$$
F(x, 0)=f(x) \text { and } F(x, 1)=g(x), \text { for all } x \in X
$$

If such a homotopy exists, we say that f is homotopic to g, and denote this by $f \simeq g$.
If f is homotopic to a constant map, i.e., if $f \simeq$ const $_{y}$, for some $y \in Y$, then we say that f is nullhomotopic.

Example 1.2. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ any two continuous, real functions. Then $f \simeq g$.
To see why this is the case, define a function $F: \mathbb{R} \times[0,1] \rightarrow \mathbb{R}$ by

$$
F(x, t)=(1-t) \cdot f(x)+t \cdot g(x) .
$$

Clearly, F is continuous, being a composite of continuous functions. Moreover, $F(x, 0)=(1-0) \cdot f(x)+0 \cdot g(x)=f(x)$, and $F(x, 1)=(1-1) \cdot f(x)+1 \cdot g(x)=g(x)$. Thus, F is a homotopy between f and g.

In particular, this shows that any continuous $\operatorname{map} f: \mathbb{R} \rightarrow \mathbb{R}$ is nullhomotopic.
This example can be generalized. First, we need a definition.
Definition 1.3. A subset $A \subset \mathbb{R}^{n}$ is said to be convex if, given any two points $x, y \in A$, the straight line segment from x to y is contained in A. In other words,

$$
(1-t) x+t y \in A, \text { for every } t \in[0,1] .
$$

Proposition 1.4. Let A be a convex subset of \mathbb{R}^{n}, endowed with the subspace topology, and let X be any topological space. Then any two continuous maps $f, g: X \rightarrow A$ are homotopic.

Proof. Use the same homotopy as in Example 1.2. Things work out, due to the convexity assumption.

Let X, Y be two topological spaces, and let $\operatorname{Map}(X, Y)$ be the set of all continuous maps from X to Y.

Theorem 1.5. Homotopy is an equivalence relation on $\operatorname{Map}(X, Y)$.
Proof. We need to verify that \simeq is reflexive, symmetric, and transitive.
Reflexivity $(f \simeq f)$. The map $F: X \times I \rightarrow X, F(x, t)=f(x)$ is a homotopy from f to f.

Symmetry $(f \simeq g \Rightarrow g \simeq f)$. Suppose $F: X \times I \rightarrow X$ is a homotopy from f to g. Then the map $G: X \times I \rightarrow X$,

$$
G(x, t)=F(x, 1-t)
$$

is a homotopy from g to f.
Transitivity ($f \simeq g \& g \simeq h \Rightarrow f \simeq h$). Suppose $F: X \times I \rightarrow X$ is a homotopy from f to g and $G: X \times I \rightarrow X$ is a homotopy from g to h. Then the map $H: X \times I \rightarrow X$,

$$
H(x, t)= \begin{cases}F(x, 2 t) & \text { if } 0 \leq t \leq 1 / 2 \\ G(x, 2 t-1) & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

is a homotopy from f to h, as can be verified, using the Pasting Lemma.
We shall denote the homotopy class of a continuous map $f: X \rightarrow Y$ by $[f]$. That is to say:

$$
[f]=\{g \in \operatorname{Map}(X, Y) \mid g \simeq f\}
$$

Moreover, we shall denote set of homotopy classes of continuous maps from X to Y as

$$
[X, Y]=\operatorname{Map}(X, Y) / \simeq
$$

Example 1.6. From Example 1.2, we deduce that $[\mathbb{R}, \mathbb{R}]=\left\{\left[\right.\right.$ const $\left.\left._{0}\right]\right\}$. More generally, let X be any topological space, and let A be a (non-empty) convex subset of \mathbb{R}^{n}. We then deduce from Proposition 1.4 that

$$
[X, A]=\left\{\left[\mathrm{const}_{a}\right]\right\}, \quad \text { for some } a \in A .
$$

Proposition 1.7. Let $f, f^{\prime}: X \rightarrow Y$ and $g, g^{\prime}: Y \rightarrow Z$ be continuous maps, and let $g \circ f, g^{\prime} \circ f^{\prime}: X \rightarrow Z$ be the respective composite maps. If $f \simeq f^{\prime}$ and $g \simeq g^{\prime}$, then $g \circ f \simeq g^{\prime} \circ f^{\prime}$.

Proof. Let $F: X \times I \rightarrow Y$ be a homotopy between f and f^{\prime} and $G: Y \times I \rightarrow Z$ be a homotopy between g and g^{\prime}. Define a map $H: X \times I \rightarrow Z$ by

$$
H(x, t)=G(F(x, t), t)
$$

Clearly, H is continuous. Moreover,

$$
\begin{aligned}
& H(x, 0)=G(F(x, 0), 0)=G(f(x), 0)=g(f(x)) \\
& H(x, 1)=G(F(x, 1), 1)=G\left(f^{\prime}(x), 1\right)=g^{\prime}\left(f^{\prime}(x)\right)
\end{aligned}
$$

Thus, H is a homotopy between $g \circ f$ and $g^{\prime} \circ f^{\prime}$.

As a consequence, composition of continuous maps defines a function

$$
[X, Y] \times[Y, Z] \rightarrow[X, Z], \quad([f],[g]) \mapsto[g \circ f]
$$

2. Homotopy equivalences

Definition 2.1. Let $f: X \rightarrow Y$ be a continuous map. Then f is said to be homotopy equivalence if there exists a continuous map $g: Y \rightarrow X$ such that

$$
f \circ g \simeq \operatorname{id}_{Y} \quad \text { and } \quad g \circ f \simeq \operatorname{id}_{X} .
$$

The map g in the above definition is said to be a homotopy inverse to f.
Remark 2.2. Every homeomorphism $f: X \rightarrow Y$ is a homotopy equivalence: simply take $g=f^{-1}$. The converse is far from true, in general.

The previous definition leads to a basic notion in algebraic topology.
Definition 2.3. Two spaces X and Y are said to be homotopy equivalent (written $X \simeq Y)$ if there is a homotopy equivalence $f: X \rightarrow Y$.

Remark 2.4. By Remark 2.2,

$$
X \cong Y \Longrightarrow X \simeq Y
$$

But the converse is far from being true. For instance, $\mathbb{R} \simeq\{0\}$, but of course $\mathbb{R} \not \approx\{0\}$ (since \mathbb{R} is infinite, so there is not even a bijection from \mathbb{R} to $\{0\}$).

Proposition 2.5. Homotopy equivalence is an equivalence relation (on topological spaces).

Proof. We need to verify that \simeq is reflexive, symmetric, and transitive.
Reflexivity $(X \simeq X)$. The identity map $\operatorname{id}_{X}: X \rightarrow X$ is a homeomorphism, and thus a homotopy equivalence.

Symmetry ($X \simeq Y \Rightarrow Y \simeq X$). Suppose $f: X \rightarrow Y$ is a homotopy equivalence, with homotopy inverse g. Then $g: Y \rightarrow X$ is a homotopy equivalence, with homotopy inverse f.

Transitivity $(X \simeq Y \& Y \simeq Z \Rightarrow X \simeq Z)$. Suppose $f: X \rightarrow Y$ is a homotopy equivalence, with homotopy inverse g, and $h: Y \rightarrow Z$ is a homotopy equivalence, with homotopy inverse k. Using Proposition 1.7 (and the associativity of compositions) the following assertion is readily verified: $h \circ f: X \rightarrow Z$ is a homotopy equivalence, with homotopy inverse $g \circ k$.

Equivalence classes under \simeq are called homotopy types. The simplest homotopy type is that of a singleton. This merits a definition.

Definition 2.6. A topological space X is said to be contractible if X is homotopy equivalent to a point, i.e., $X \simeq\left\{x_{0}\right\}$.

