Prof. Alexandru Suciu TOPOLOGY

MATH 4565

Fall 2021

Handout 2: Interior, closure, and boundary

Let X be a topological space. For a subset $A \subset X$, we define the *interior* and the closure of A in X to be the sets

(1)
$$\operatorname{Int}(A) \coloneqq \bigcup_{\substack{U \subset A \\ U \text{ open}}} U,$$
(2)
$$\overline{A} \coloneqq \bigcap_{\substack{C \supset A \\ C \text{ closed}}} C.$$

Furthermore, the *exterior* of A is the complement in X of the closure of A, while the boundary of A is the complement in X of the union of the interior and the exterior of A,

(3)
$$\operatorname{Ext}(A) \coloneqq X \setminus \overline{A}, \qquad \partial A \coloneqq X \setminus (\operatorname{Int}(A) \cup \operatorname{Ext}(A)).$$

The following results give necessary and sufficient conditions for a point in X to belong to either the interior, closure, or boundary of A.

Proposition 1. A point $x \in X$ belongs to the interior of A if and only if there is a neighborhood of x contained in A.

Proof. By definition (1), $x \in Int(A)$ if and only if x belongs to some open subset U which is contained in A; in other words, if and only if there is an (open) neighborhood U of x such that $U \subset A$.

Note the contrapositive formulation of this proposition: A point $x \in X$ does not belong to the interior of A if and only if any neighborhood U of x contains a point y which is not in A, that is, $U \not\subset A$.

Proposition 2. For a point $x \in X$, the following are equivalent.

- (i) $x \in \overline{A}$.
- (ii) If U is a neighborhood of x, then $U \cap A \neq \emptyset$.

Proof. (i) \Rightarrow (ii) By definition (2), a point x belongs to \overline{A} if and only if, for all closed subsets C that contain A, we have that $x \in C$. Now let U be an open subset of X that contains x and suppose $U \cap A = \emptyset$. Then the complement $U^{\complement} = X \setminus U$ is a closed subset and $A \subset U^{\widehat{\complement}}$. Hence, $x \in U^{\complement}$, contradicting our assumption that $x \in C$. Therefore, $U \cap A \neq \emptyset$.

(ii) \Rightarrow (i) Suppose that $U \cap A \neq \emptyset$ for all open subsets U such that $x \in U$. Let C be a closed subset such that $C \supset A$, and suppose $x \notin C$. Then the complement $C^{\complement} = X \setminus C$ is an open subset containing x, and so $C^{\complement} \cap A \neq \emptyset$, thereby contradicting our assumption that $A \subset C$. Therefore, $x \in C$, and the proof is complete. \Box

Note the contrapositive formulation of this proposition: A point $x \in X$ does not belong to the closure of A if and only if there is a neighborhood of x which does not intersect A.

Proposition 3. A point $x \in X$ belongs to the boundary of A if and only if every neighborhood of x contains both a point of A and a point of $X \setminus A$.

Proof. By De Morgan's Laws and the definitions of the boundary and exterior of A, we have that

$$\partial A = X \setminus (\operatorname{Int}(A) \cup \operatorname{Ext}(A))$$

= $(X \setminus \operatorname{Int}(A)) \cap (X \setminus \operatorname{Ext}(A))$
= $(X \setminus \operatorname{Int}(A)) \cap (X \setminus (X \setminus \overline{A}))$
= $(X \setminus \operatorname{Int}(A)) \cap \overline{A}.$

Thus, $x \in \partial A$ if and only if $x \in X \setminus \text{Int}(A)$ and $x \in \overline{A}$.

So assume $x \in \partial A$, and let U be a neighborhood of x. Since x is not contained in Int(A), Proposition 1 implies that U is not contained in A; that is, there is a point $y \in U$ such that $y \in X \setminus A$. On the other hand, since $x \in \overline{A}$, Proposition 2 implies that $U \cap A \neq \emptyset$, that is, there is a point $z \in U$ such that $z \in A$.

The converse statement is proved by tracing back through the above argument. This completes the proof. $\hfill \Box$

Note the contrapositive formulation of this proposition: A point $x \in X$ does not belong to the boundary of A if and only if every neighborhood of x is disjoint from both A and its complement.