
Midterm Exam

MATH 3175 – Group Theory

Solutions

Problem 1. Recall that if f : Z15 → D6 is a homomorphism then |f(a)| divides |a|. Also recall,
that mapping a generator of Z15 via f completely defines the homomorphism. The element 1
generates Z15, and |1| = 15, hence we have |f(1)| must divide 15. I.e. |f(1)| can be either 1, 3, 5,
or 15. Since there are no elements of order 15 or 5 in D6, we are left with the possibilities 1 and
3. If |f(1)| = 1 then we obtain the trivial homomorphism. Next, there are two elements of order 3
in D6; these are r2 and r4. Hence, defining f(1) = r2 gives rise to a homomorphism and similarly,
defining f(1) = r4 gives rise to another.

Problem 2. S4 is the set of permutations on four elements. If we consider all the elements of S4
which keep element 1 fixed, we obtain all permutations of elements 2,3 and 4 (with 1 being sent to
itself). This subset is isomorphic to S3 under the function which re-labels element 2 to element 1,
element 3 to element 2 and element 4 to element 3. For example, the permutation (1)(243) 7→ (123).
3 More such permutation groups can be obtained by fixing element 2, 3 or 4 as we did above and
are all isomorphic to S3 via similar maps. If you did the computations out, you noticed that these
groups were generated by 〈(234), (23)〉, 〈(134), (13)〉, 〈(124), (12)〉, and 〈(123), (12)〉 respectively.

Problem 3 a). Consider f : R→ T defined by f(x) = eix = sin(x)+i cos(x) ∀ x ∈ R. Note that the
equality utilizes Euler’s formula. First, notice that f(ab) = f(a+ b) = ei(a+b) = eiaeib = f(a)f(b),
so f is a group homomorphism. Next, we will show surjectivity. Let t ∈ T . Then t = a + bi for
some a, b ∈ R such that

√
a2 + b2 = 1 ⇐⇒ a2 + b2 = 1. We wish to find an x ∈ R such that

f(x) = a+ bi. I.e. we need sin(x) = a and cos(x) = b. But, since a2 + b2 = 1, the point (a, b) lies
on the unit circle, implying that there is an angle x such that a = sin(x) and b = cos(x). Thus, f
is surjective.

b). We will use the first isomorphism theorem to show that T is isomorphic to R/Z. First, notice
that Kerf = {n2π|n ∈ Z} = (2π)Z (since Z under addition is a group). Thus, by the first
isomorphism theorem, R/(2π)Z is isomorphic to T . Also note that we can make a slight change to
our function in part a: f(x) = e2πix = sin(2πx) + i cos(2πx) and we can follow the same reasoning
as in part a) to conclude that this is in fact a surjective homomorphism. Furthermore, now the
kernel of this new homomorphism is the set of integers. Thus, similarly to the work above, we will
get that R/Z is isomorphic to T .

Problem 4. a) The Heisenberg group G of 3×3 upper-diagonal matrices with entries in Z2 and 1’s
down the diagonal is a subgroup of GL2(Z2). As a set, G = Z3

2 (thus, G has order 8), with group
operation given by (a, b, c) ·(a′, b′, c′) = (a+a′, b+b′, c+c′+ab′). Clearly, (1, 0, 0) ·(0, 1, 0) = (1, 1, 1)
is different from (0, 1, 0) · (1, 0, 0) = (1, 1, 0), and so G is not Abelian. The only elements in G that
commute with all of G are of the form (0, 0, c); thus, Z(G) ∼= Z2.

b) By Lagrange’s theorem, all subgroups of G must have order either 1, 2, 4, or 8. To start with,
G has the following subgroups: the trivial subgroup {(0, 0, 0)}, the center Z(G) = 〈(0, 0, 1)〉, and
G itself. By general principles (or by inspection), all these subgroups are normal.

Additionally, G has 4 subgroups of order 2, generated by the elements (1, 0, 0), (0, 1, 0), (1, 0, 1) and
(0, 1, 1), respectively, and 3 subgroups of order 4; the first one is cyclic, generated by (1, 1, 1), while
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the last two are the Klein 4-groups 〈(1, 0, 0), (0, 0, 1)〉 and 〈(0, 1, 0), (0, 0, 1)〉. All four subgroups of
order 2 are non-normal (as can be seen by conjugating each one by a suitable element), whereas all
three subgroups of order 4 are normal (since they have index 2).

c) The group G is not isomorphic to Q8, since the orders of their elements don’t match. For
instance, G has five elements of order 2 (the generators of the 5 subgroups of order 2 identified
above), whereas Q8 = {±1,±i,±j ± k} has only one, namely, −1.

On the other hand, G is isomorphic to D4. Indeed, we know from the classification of groups of order
8 that there are three Abelian ones (Z8, Z4×Z2, and Z2×Z2×Z2) and two non-Abelian ones (Q8

and D4); since we’ve seen that G is non-Abelian and is not Q8, it must be D4. Alternatively, we can
define an explicit isomorphism from G = 〈(1, 1, 1), (1, 0, 0)〉 to D4 = 〈a, b | a4 = b2 = 1, ba = a−1b〉
by sending (1, 1, 1) to a and (1, 0, 0) to b; clearly, the relations among the two sets of generators
match under this correspondence.

Problem 5. Let CG(S) = {g ∈ G | gsg−1 = s for all s ∈ S} and NG(S) = {g ∈ G | gSg−1 = S}
be the centralizer and the normalizer of a subset S ⊂ G.

a) Let g, h ∈ CG(S). Then (gh−1)s(gh−1)−1 = gh−1shg−1 = gsg−1 = s for all s ∈ S, and so
gh−1 ∈ CG(S). Thus, CG(S) is a subgroup of G.

Now let g, h ∈ NG(S). Then (gh−1)S(gh−1)−1 = gh−1Shg−1 = gSg−1 = S, and so gh−1 ∈ NG(S).
Thus, NG(S) is a subgroup of G.

b) Clearly, CG(S) is a subset (and thus a subgroup) of NG(S). To show it’s actually a normal
subgroup, let h ∈ CG(S) and g ∈ NG(S). Then, for every s ∈ S, we have (ghg−1)s(ghg−1)−1 =
ghg−1sgh−1g−1. But g−1sg = s′ for some s′ ∈ S, and so ghg−1sgh−1g = ghs′h−1g−1 = gs′g−1 = s.
Thus, ghg−1 ∈ CG(S), showing that CG(S) E NG(S).

c) Take S = G; then CG(S) = Z(G), the center of G. Assume now that G is non-Abelian (e.g.,
G = S3); then Z(G) is properly contained in G, showing that S 6⊆ CG(S).

d) If H ≤ G then hkh−1 ∈ H for all h, k ∈ H, and hence h ∈ NG(H) for all h ∈ H. Therefore H is
a subset (and thus a subgroup) of NG(H).
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