Midterm Exam

MATH 3175 – Group Theory

Solutions

Problem 1. Recall that if $f : \mathbb{Z}_{15} \to D_6$ is a homomorphism then |f(a)| divides |a|. Also recall, that mapping a generator of \mathbb{Z}_{15} via f completely defines the homomorphism. The element 1 generates \mathbb{Z}_{15} , and |1| = 15, hence we have |f(1)| must divide 15. I.e. |f(1)| can be either 1, 3, 5, or 15. Since there are no elements of order 15 or 5 in D_6 , we are left with the possibilities 1 and 3. If |f(1)| = 1 then we obtain the trivial homomorphism. Next, there are two elements of order 3 in D_6 ; these are r^2 and r^4 . Hence, defining $f(1) = r^2$ gives rise to a homomorphism and similarly, defining $f(1) = r^4$ gives rise to another.

Problem 2. S_4 is the set of permutations on four elements. If we consider all the elements of S_4 which keep element 1 fixed, we obtain all permutations of elements 2,3 and 4 (with 1 being sent to itself). This subset is isomorphic to S_3 under the function which re-labels element 2 to element 1, element 3 to element 2 and element 4 to element 3. For example, the permutation $(1)(243) \mapsto (123)$. 3 More such permutation groups can be obtained by fixing element 2, 3 or 4 as we did above and are all isomorphic to S_3 via similar maps. If you did the computations out, you noticed that these groups were generated by $\langle (234), (23) \rangle$, $\langle (134), (13) \rangle$, $\langle (124), (12) \rangle$, and $\langle (123), (12) \rangle$ respectively.

Problem 3 a). Consider $f: \mathbb{R} \to T$ defined by $f(x) = e^{ix} = \sin(x) + i\cos(x) \forall x \in \mathbb{R}$. Note that the equality utilizes Euler's formula. First, notice that $f(ab) = f(a+b) = e^{i(a+b)} = e^{ia}e^{ib} = f(a)f(b)$, so f is a group homomorphism. Next, we will show surjectivity. Let $t \in T$. Then t = a + bi for some $a, b \in \mathbb{R}$ such that $\sqrt{a^2 + b^2} = 1 \iff a^2 + b^2 = 1$. We wish to find an $x \in \mathbb{R}$ such that f(x) = a + bi. I.e. we need $\sin(x) = a$ and $\cos(x) = b$. But, since $a^2 + b^2 = 1$, the point (a, b) lies on the unit circle, implying that there is an angle x such that $a = \sin(x)$ and $b = \cos(x)$. Thus, f is surjective.

b). We will use the first isomorphism theorem to show that T is isomorphic to \mathbb{R}/\mathbb{Z} . First, notice that Ker $f = \{n2\pi | n \in \mathbb{Z}\} = (2\pi)\mathbb{Z}$ (since \mathbb{Z} under addition is a group). Thus, by the first isomorphism theorem, $\mathbb{R}/(2\pi)\mathbb{Z}$ is isomorphic to T. Also note that we can make a slight change to our function in part a: $f(x) = e^{2\pi i x} = \sin(2\pi x) + i\cos(2\pi x)$ and we can follow the same reasoning as in part a) to conclude that this is in fact a surjective homomorphism. Furthermore, now the kernel of this new homomorphism is the set of integers. Thus, similarly to the work above, we will get that \mathbb{R}/\mathbb{Z} is isomorphic to T.

Problem 4. a) The Heisenberg group G of 3×3 upper-diagonal matrices with entries in \mathbb{Z}_2 and 1's down the diagonal is a subgroup of $\operatorname{GL}_2(\mathbb{Z}_2)$. As a set, $G = \mathbb{Z}_2^3$ (thus, G has order 8), with group operation given by $(a, b, c) \cdot (a', b', c') = (a+a', b+b', c+c'+ab')$. Clearly, $(1, 0, 0) \cdot (0, 1, 0) = (1, 1, 1)$ is different from $(0, 1, 0) \cdot (1, 0, 0) = (1, 1, 0)$, and so G is not Abelian. The only elements in G that commute with all of G are of the form (0, 0, c); thus, $Z(G) \cong \mathbb{Z}_2$.

b) By Lagrange's theorem, all subgroups of G must have order either 1, 2, 4, or 8. To start with, G has the following subgroups: the trivial subgroup $\{(0,0,0)\}$, the center $Z(G) = \langle (0,0,1) \rangle$, and G itself. By general principles (or by inspection), all these subgroups are normal.

Additionally, G has 4 subgroups of order 2, generated by the elements (1, 0, 0), (0, 1, 0), (1, 0, 1) and (0, 1, 1), respectively, and 3 subgroups of order 4; the first one is cyclic, generated by (1, 1, 1), while

the last two are the Klein 4-groups $\langle (1,0,0), (0,0,1) \rangle$ and $\langle (0,1,0), (0,0,1) \rangle$. All four subgroups of order 2 are non-normal (as can be seen by conjugating each one by a suitable element), whereas all three subgroups of order 4 are normal (since they have index 2).

c) The group G is not isomorphic to Q_8 , since the orders of their elements don't match. For instance, G has five elements of order 2 (the generators of the 5 subgroups of order 2 identified above), whereas $Q_8 = \{\pm 1, \pm i, \pm j \pm k\}$ has only one, namely, -1.

On the other hand, G is isomorphic to D_4 . Indeed, we know from the classification of groups of order 8 that there are three Abelian ones (\mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$) and two non-Abelian ones (Q_8 and D_4); since we've seen that G is non-Abelian and is not Q_8 , it must be D_4 . Alternatively, we can define an explicit isomorphism from $G = \langle (1, 1, 1), (1, 0, 0) \rangle$ to $D_4 = \langle a, b \mid a^4 = b^2 = 1, ba = a^{-1}b \rangle$ by sending (1, 1, 1) to a and (1, 0, 0) to b; clearly, the relations among the two sets of generators match under this correspondence.

Problem 5. Let $C_G(S) = \{g \in G \mid gsg^{-1} = s \text{ for all } s \in S\}$ and $N_G(S) = \{g \in G \mid gSg^{-1} = S\}$ be the centralizer and the normalizer of a subset $S \subset G$.

a) Let $g, h \in C_G(S)$. Then $(gh^{-1})s(gh^{-1})^{-1} = gh^{-1}shg^{-1} = gsg^{-1} = s$ for all $s \in S$, and so $gh^{-1} \in C_G(S)$. Thus, $C_G(S)$ is a subgroup of G.

Now let $g, h \in N_G(S)$. Then $(gh^{-1})S(gh^{-1})^{-1} = gh^{-1}Shg^{-1} = gSg^{-1} = S$, and so $gh^{-1} \in N_G(S)$. Thus, $N_G(S)$ is a subgroup of G.

b) Clearly, $C_G(S)$ is a subset (and thus a subgroup) of $N_G(S)$. To show it's actually a normal subgroup, let $h \in C_G(S)$ and $g \in N_G(S)$. Then, for every $s \in S$, we have $(ghg^{-1})s(ghg^{-1})^{-1} = ghg^{-1}sgh^{-1}g^{-1}$. But $g^{-1}sg = s'$ for some $s' \in S$, and so $ghg^{-1}sgh^{-1}g = ghs'h^{-1}g^{-1} = gs'g^{-1} = s$. Thus, $ghg^{-1} \in C_G(S)$, showing that $C_G(S) \leq N_G(S)$.

c) Take S = G; then $C_G(S) = Z(G)$, the center of G. Assume now that G is non-Abelian (e.g., $G = S_3$); then Z(G) is properly contained in G, showing that $S \not\subseteq C_G(S)$.

d) If $H \leq G$ then $hkh^{-1} \in H$ for all $h, k \in H$, and hence $h \in N_G(H)$ for all $h \in H$. Therefore H is a subset (and thus a subgroup) of $N_G(H)$.