# Midterm Exam 

## MATH 3175 - Group Theory

## Solutions

Problem 1. Recall that if $f: \mathbb{Z}_{15} \rightarrow D_{6}$ is a homomorphism then $|f(a)|$ divides $|a|$. Also recall, that mapping a generator of $\mathbb{Z}_{15}$ via $f$ completely defines the homomorphism. The element 1 generates $\mathbb{Z}_{15}$, and $|1|=15$, hence we have $|f(1)|$ must divide 15 . I.e. $|f(1)|$ can be either $1,3,5$, or 15 . Since there are no elements of order 15 or 5 in $D_{6}$, we are left with the possibilities 1 and 3. If $|f(1)|=1$ then we obtain the trivial homomorphism. Next, there are two elements of order 3 in $D_{6}$; these are $r^{2}$ and $r^{4}$. Hence, defining $f(1)=r^{2}$ gives rise to a homomorphism and similarly, defining $f(1)=r^{4}$ gives rise to another.

Problem 2. $S_{4}$ is the set of permutations on four elements. If we consider all the elements of $S_{4}$ which keep element 1 fixed, we obtain all permutations of elements 2,3 and 4 (with 1 being sent to itself). This subset is isomorphic to $S_{3}$ under the function which re-labels element 2 to element 1, element 3 to element 2 and element 4 to element 3 . For example, the permutation (1)(243) $\mapsto(123)$. 3 More such permutation groups can be obtained by fixing element 2,3 or 4 as we did above and are all isomorphic to $S_{3}$ via similar maps. If you did the computations out, you noticed that these groups were generated by $\langle(234),(23)\rangle,\langle(134),(13)\rangle,\langle(124),(12)\rangle$, and $\langle(123),(12)\rangle$ respectively.

Problem 3 a). Consider $f: \mathbb{R} \rightarrow T$ defined by $f(x)=e^{i x}=\sin (x)+i \cos (x) \forall x \in \mathbb{R}$. Note that the equality utilizes Euler's formula. First, notice that $f(a b)=f(a+b)=e^{i(a+b)}=e^{i a} e^{i b}=f(a) f(b)$, so $f$ is a group homomorphism. Next, we will show surjectivity. Let $t \in T$. Then $t=a+b i$ for some $a, b \in \mathbb{R}$ such that $\sqrt{a^{2}+b^{2}}=1 \Longleftrightarrow a^{2}+b^{2}=1$. We wish to find an $x \in \mathbb{R}$ such that $f(x)=a+b i$. I.e. we need $\sin (x)=a$ and $\cos (x)=b$. But, since $a^{2}+b^{2}=1$, the point $(a, b)$ lies on the unit circle, implying that there is an angle $x$ such that $a=\sin (x)$ and $b=\cos (x)$. Thus, $f$ is surjective.
b). We will use the first isomorphism theorem to show that $T$ is isomorphic to $\mathbb{R} / \mathbb{Z}$. First, notice that $\operatorname{Ker} f=\{n 2 \pi \mid n \in \mathbb{Z}\}=(2 \pi) \mathbb{Z}$ (since $\mathbb{Z}$ under addition is a group). Thus, by the first isomorphism theorem, $\mathbb{R} /(2 \pi) \mathbb{Z}$ is isomorphic to $T$. Also note that we can make a slight change to our function in part $a$ : $f(x)=e^{2 \pi i x}=\sin (2 \pi x)+i \cos (2 \pi x)$ and we can follow the same reasoning as in part a) to conclude that this is in fact a surjective homomorphism. Furthermore, now the kernel of this new homomorphism is the set of integers. Thus, similarly to the work above, we will get that $\mathbb{R} / \mathbb{Z}$ is isomorphic to $T$.

Problem 4. a) The Heisenberg group $G$ of $3 \times 3$ upper-diagonal matrices with entries in $\mathbb{Z}_{2}$ and 1 's down the diagonal is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$. As a set, $G=\mathbb{Z}_{2}^{3}$ (thus, $G$ has order 8), with group operation given by $(a, b, c) \cdot\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}+a b^{\prime}\right)$. Clearly, $(1,0,0) \cdot(0,1,0)=(1,1,1)$ is different from $(0,1,0) \cdot(1,0,0)=(1,1,0)$, and so $G$ is not Abelian. The only elements in $G$ that commute with all of $G$ are of the form $(0,0, c)$; thus, $Z(G) \cong \mathbb{Z}_{2}$.
b) By Lagrange's theorem, all subgroups of $G$ must have order either 1, 2, 4, or 8 . To start with, $G$ has the following subgroups: the trivial subgroup $\{(0,0,0)\}$, the center $Z(G)=\langle(0,0,1)\rangle$, and $G$ itself. By general principles (or by inspection), all these subgroups are normal.
Additionally, $G$ has 4 subgroups of order 2 , generated by the elements $(1,0,0),(0,1,0),(1,0,1)$ and $(0,1,1)$, respectively, and 3 subgroups of order 4 ; the first one is cyclic, generated by ( $1,1,1$ ), while
the last two are the Klein 4-groups $\langle(1,0,0),(0,0,1)\rangle$ and $\langle(0,1,0),(0,0,1)\rangle$. All four subgroups of order 2 are non-normal (as can be seen by conjugating each one by a suitable element), whereas all three subgroups of order 4 are normal (since they have index 2).
c) The group $G$ is not isomorphic to $Q_{8}$, since the orders of their elements don't match. For instance, $G$ has five elements of order 2 (the generators of the 5 subgroups of order 2 identified above), whereas $Q_{8}=\{ \pm 1, \pm i, \pm j \pm k\}$ has only one, namely, -1 .

On the other hand, $G$ is isomorphic to $D_{4}$. Indeed, we know from the classification of groups of order 8 that there are three Abelian ones ( $\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}$, and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ ) and two non-Abelian ones ( $Q_{8}$ and $D_{4}$ ); since we've seen that $G$ is non-Abelian and is not $Q_{8}$, it must be $D_{4}$. Alternatively, we can define an explicit isomorphism from $G=\langle(1,1,1),(1,0,0)\rangle$ to $D_{4}=\left\langle a, b \mid a^{4}=b^{2}=1, b a=a^{-1} b\right\rangle$ by sending $(1,1,1)$ to $a$ and $(1,0,0)$ to $b$; clearly, the relations among the two sets of generators match under this correspondence.

Problem 5. Let $\mathrm{C}_{G}(S)=\left\{g \in G \mid g s g^{-1}=s\right.$ for all $\left.s \in S\right\}$ and $\mathrm{N}_{G}(S)=\left\{g \in G \mid g S g^{-1}=S\right\}$ be the centralizer and the normalizer of a subset $S \subset G$.
a) Let $g, h \in \mathrm{C}_{G}(S)$. Then $\left(g h^{-1}\right) s\left(g h^{-1}\right)^{-1}=g h^{-1} s h g^{-1}=g s g^{-1}=s$ for all $s \in S$, and so $g h^{-1} \in \mathrm{C}_{G}(S)$. Thus, $\mathrm{C}_{G}(S)$ is a subgroup of $G$.

Now let $g, h \in \mathrm{~N}_{G}(S)$. Then $\left(g h^{-1}\right) S\left(g h^{-1}\right)^{-1}=g h^{-1} S h g^{-1}=g S g^{-1}=S$, and so $g h^{-1} \in \mathrm{~N}_{G}(S)$. Thus, $\mathrm{N}_{G}(S)$ is a subgroup of $G$.
b) Clearly, $\mathrm{C}_{G}(S)$ is a subset (and thus a subgroup) of $\mathrm{N}_{G}(S)$. To show it's actually a normal subgroup, let $h \in \mathrm{C}_{G}(S)$ and $g \in \mathrm{~N}_{G}(S)$. Then, for every $s \in S$, we have $\left(g h g^{-1}\right) s\left(g h g^{-1}\right)^{-1}=$ $g h g^{-1} s g h^{-1} g^{-1}$. But $g^{-1} s g=s^{\prime}$ for some $s^{\prime} \in S$, and so $g h g^{-1} s g h^{-1} g=g h s^{\prime} h^{-1} g^{-1}=g s^{\prime} g^{-1}=s$. Thus, $g h g^{-1} \in \mathrm{C}_{G}(S)$, showing that $\mathrm{C}_{G}(S) \unlhd \mathrm{N}_{G}(S)$.
c) Take $S=G$; then $\mathrm{C}_{G}(S)=Z(G)$, the center of $G$. Assume now that $G$ is non-Abelian (e.g., $\left.G=S_{3}\right)$; then $Z(G)$ is properly contained in $G$, showing that $S \nsubseteq \mathrm{C}_{G}(S)$.
d) If $H \leq G$ then $h k h^{-1} \in H$ for all $h, k \in H$, and hence $h \in \mathrm{~N}_{G}(H)$ for all $h \in H$. Therefore $H$ is a subset (and thus a subgroup) of $\mathrm{N}_{G}(H)$.

