Quiz 6

1. Let H be set of all 2×2 matrices of the form $\left[\begin{array}{ll}a & 0 \\ c & d\end{array}\right]$, with $a, c, d \in \mathbb{Z}$ and $a d= \pm 1$.
(a) Show that H is a subgroup of $\mathrm{GL}_{2}(\mathbb{Z})$.
H is a subset of $\mathrm{GL}_{2}(\mathbb{Z})$ and

- The identity $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in H$.
- Closed under multiplication: $\left[\begin{array}{ll}a & 0 \\ c & d\end{array}\right]\left[\begin{array}{cc}a^{\prime} & 0 \\ c^{\prime} & d^{\prime}\end{array}\right]=\left[\begin{array}{cc}a a^{\prime} & 0 \\ c a^{\prime}+d c^{\prime} & d d^{\prime}\end{array}\right] \in H$.
- Closed under taking inverse: $\left[\begin{array}{ll}a & 0 \\ c & d\end{array}\right]^{-1}=(a d)^{-1}\left[\begin{array}{cc}d & 0 \\ -c & a\end{array}\right] \in H$.

Hence, H is a subgroup.
(b) Is H a normal subgroup of $\mathrm{GL}_{2}(\mathbb{Z})$?

No. Because, for instance, $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right] \notin H$.
$\left(\operatorname{NOTE}: \mathrm{GL}_{2}(\mathbb{Z})=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c= \pm 1\right\}\right)$
2. Let $G=U(16)$, and $H=\{1,15\}$.
(a) List the elements of G / H.
$G / H=\{H, 3 H, 5 H, 7 H\}$
(b) Compute the Cayley table for this group.

	H	$3 H$	$5 H$	$7 H$
H	H	$3 H$	$5 H$	$7 H$
$3 H$	$3 H$	$7 H$	H	$5 H$
$5 H$	$5 H$	H	$7 H$	$3 H$
$7 H$	$7 H$	$5 H$	$3 H$	H

3. Let $G=\mathbb{Z}_{4} \oplus \mathbb{Z}_{2}$, and consider the subgroup $H=\{(0,0),(2,0),(0,1),(2,1)\}$.
(a) Identify the group H.
H is an abelian group of order 4 , hence it is isomorphic to either $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ or \mathbb{Z}_{4}. There are no elements in H with order 4 , so it cannot be isomorphic to \mathbb{Z}_{4}. So, $H \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
(b) Show that H is a normal subgroup of G.

The group G is abelian, thus all of its subgroups are normal. Hence, H is a normal subgroup.
(c) Identify the group G / H.

$$
|G / H|=\frac{|G|}{|H|}=8 / 4=2
$$

So, $G / H \cong \mathbb{Z}_{2}$.
4. Let \mathbb{R}^{*} be the multiplicative group of non-zero real numbers, and let $\phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ be the function given by $\phi(x)=x^{2}$.
(a) Show that ϕ is a homomorphism.

$$
\phi(x y)=(x y)^{2}=x^{2} y^{2}=\phi(x) \phi(y) .
$$

(b) Find $\operatorname{ker}(\phi)$ and $\operatorname{im}(\phi)$.

$$
\begin{aligned}
& \operatorname{ker}(\phi)=\left\{x \in \mathbb{R}^{*} \mid \phi(x)=1\right\}=\{ \pm 1\}, \\
& \operatorname{im}(\phi)=\left\{y \in \mathbb{R}^{*} \mid \exists x \text { such that } \phi(x)=y\right\}=\{y \in \mathbb{R} \mid y>0\} .
\end{aligned}
$$

5. Suppose $\phi: \mathbb{Z}_{20} \rightarrow \mathbb{Z}_{12}$ is a homomorphism with $\phi(3)=9$.
(a) Determine $\phi(x)$, for all $x \in \mathbb{Z}_{20}$.
$\phi(1)=\phi(21)=\phi(3 \times 7)=\phi(3+3+3+3+3+3+3)=7 \phi(3)=7 \times 9=3$, so $\phi(x)=3 x$.
(b) Find $\operatorname{ker}(\phi)$ and $\operatorname{im}(\phi)$.

$$
\begin{aligned}
& \operatorname{ker}(\phi)=\left\{x \in \mathbb{Z}_{20} \mid \phi(x)=0\right\}=\{0,4,8,12,16\} \\
& \operatorname{im}(\phi)=\{0,3,6,9\}
\end{aligned}
$$

6. Show that there is no surjective homomorphism from $\mathbb{Z}_{27} \oplus \mathbb{Z}_{3}$ onto $\mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$.

Suppose there is a homomorphism ϕ from $\mathbb{Z}_{27} \oplus \mathbb{Z}_{3}$ onto $\mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$. Since the two groups have the same order (namely, 81), the kernel is trivial, which means $\operatorname{ker} \phi=\{(0,0)\}$. So ϕ is injective. Hence, ϕ is a bijection and a homomorphism, that is, ϕ is an isomorphism.

But $\mathbb{Z}_{27} \oplus \mathbb{Z}_{3}$ has an element of order 27, while the other group does not. Thus, the two groups cannot be isomorphic.

Our assumption has led to a contradiction. Thus, there cannot be any surjective homomorphism $\phi: \mathbb{Z}_{27} \oplus \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$.

