Solutions to Quiz 4

1. (5 points) Let \mathbb{R} be the additive group of real numbers, and let \mathbb{R}^{+}be the multiplicative group of positive real numbers. Consider the map $\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}$given by $\phi(x)=2^{x}$.
(a) Show that ϕ is an isomorphism from \mathbb{R} to \mathbb{R}^{+}.

We need to show that ϕ is a bijection, and a homomorphism.

- ϕ injective. Suppose $2^{x}=2^{y}$. Taking $\log _{2}$ on both sides, we get $x=y$.
- ϕ surjective. Let $y \in \mathbb{R}^{+}$. Then $y=\phi(x)$, where $x=\log _{2} y$.
- ϕ a homomorphism. Compute: $\phi(x+y)=2^{x+y}=2^{x} 2^{y}=\phi(x) \phi(y)$.
(b) What is the inverse isomorphism?
$\phi^{-1}: \mathbb{R}^{+} \rightarrow \mathbb{R}$, given by $\phi^{-1}(y)=\log _{2} y$

2. (4 points) Show that the automorphism group $\operatorname{Aut}\left(\mathbb{Z}_{10}\right)$ is isomorphic to a cyclic group \mathbb{Z}_{n}. What is n ?

$$
\operatorname{Aut}\left(\mathbb{Z}_{10}\right) \cong U(10) \cong \mathbb{Z}_{4}
$$

3. (6 points) Show that the following pairs of groups are not isomorphic. In each case, explain why.
(a) $U(12)$ and \mathbb{Z}_{4}.
$U(12)$ is not cyclic, since $|U(12)|=4$, but $U(12)$ has no element of order 4. On the other hand, \mathbb{Z}_{4} is cyclic. Thus, $U(12) \neq \mathbb{Z}_{4}$.
(b) S_{3} and \mathbb{Z}_{6}.
S_{3} is not abelian, since, for instance, $(12) \cdot(13) \neq(13) \cdot(12)$. On the other hand, \mathbb{Z}_{6} is abelian (all cyclic groups are abelian.) Thus, $S_{3} \neq \mathbb{Z}_{6}$.
(c) S_{4} and D_{12}.

Each permutation of S_{4} can be written as composition of disjoint cycles. So the only possible orders for the elements in S_{4} are $1,2,3$, and 4 . On the other hand, there is an element of order 12 in D_{12}, for instance, the counter-clockwise rotation by 30 degrees. Thus, $S_{4} \not \not D_{12}$.
4. (5 points) Let G be a group, and let a be an element of order 30. How many left cosets of $\left\langle a^{6}\right\rangle$ in $\langle a\rangle$ are there? List all these cosets. (Make sure to indicate all the elements in each coset.)
Solution.
$|\langle a\rangle|=|a|=30,\left|\left\langle a^{6}\right\rangle\right|=\left|a^{6}\right|=30 / \operatorname{gcd}(6,30)=5$.
The number of cosets is $|\langle a\rangle| / \mid\left\langle a^{\rangle}\right|=30 / 5=6$. They are

$$
\begin{aligned}
\langle a\rangle & =\left\{e, a^{6}, a^{12}, a^{18}, a^{24}\right\} \\
a\langle a\rangle & =\left\{a, a^{7}, a^{13}, a^{19}, a^{25}\right\} \\
a^{2}\langle a\rangle & =\{\cdots\} \\
a^{3}\langle a\rangle & =\{\cdots\} \\
a^{4}\langle a\rangle & =\{\cdots\} \\
a^{5}\langle a\rangle & =\{\cdots\}
\end{aligned}
$$

5. (5 points) Let S_{3} be the group of permutations of the set $\{1,2,3\}$. Consider the subgroup $H=\{(1),(13)\}$.
(a) Write down all the left cosets of H in S_{3}. (Make sure to indicate all the elements in each coset.)

$$
\begin{aligned}
H & =\left\{\left(\begin{array}{ll}
1
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\} \\
(12) H & =\left\{\left(\begin{array}{lll}
1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\} \\
\left(\begin{array}{ll}
1 & 3
\end{array}\right) H & =\left\{\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\}
\end{aligned}
$$

(b) What is the index of H in S_{3} ?
$\left[S_{3}: H\right]=\left|S_{3}\right| /|H|=6 / 2=3$
6. (5 points) Suppose G is a group of order 35.
(a) What are the possible orders for the elements of G ?

According to Lagrange's theorem, the order of an element in G divides the order of the group. So the possible orders of elements are 1, 5, 7 and 35 .
(b) Suppose G has an element of order 35 . What is G ?
G must be cyclic, and so $G=\mathbb{Z}_{35}$.
(c) Suppose G has precisely one subgroup of order 5 , and one subgroup of order 7 . What is G ?

Again, $G=\mathbb{Z}_{35}$.
Indeed, suppose the subgroup of order 5 is H, and the one of order 7 is K. Then $H \cup K$ has

$$
1+(5-1)+(7-1)=11
$$

elements. Choose an element a from $G \backslash(H \cup K)$. The order of a is $1,5,7$ or 35 . We claim the order of a is 35 . The order of a is not 1 because it is not the identity. The order of a is neither 5 nor 7 , for otherwise a would generate a subgroup $\langle a\rangle$ of order 5 or 7 , distinct from H or K, and we know there is precisely one subgroup of order 5 (namely, H), and precisely one subgroup of order 7 (namely, K). Thus $G=\langle a\rangle$, and so G is cyclic.

