Solutions for Quiz 3

1. (a) Draw the subgroup lattice of \mathbb{Z}_{30}.

(b) Make a table with all the elements of \mathbb{Z}_{30}, grouped according to their orders; how many elements of each possible order are there?

Order	Elements	\# of elements
30	$1,7,11,13,17,19,23,29$	8
15	$2,4,8,14,16,22,26,28$	8
10	$3,9,21,27$	4
6	5,25	2
5	$6,12,18,24$	4
3	10,20	2
2	15	1
1	0	1

2. Let a be an element of a group G, and suppose a has order 24 .
(a) List all the elements in the subgroup $\left\langle a^{4}\right\rangle$, together with their respective orders.

Elements	e	a^{4}	a^{8}	a^{12}	a^{16}	a^{20}
Orders	1	6	3	2	3	6

(b) What are the generators of the subgroup $\left\langle a^{4}\right\rangle$?

The subgroup $\left\langle a^{4}\right\rangle$ has two generators, a^{4} and a^{20}, because these are the only elements in $\langle a\rangle$ of order 6 , which is the order of the subgroup.
3. Let $\alpha=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 6 & 1 & 4 & 2\end{array}\right]$ and $\beta=\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 2 & 6 & 5\end{array}\right]$, viewed as elements in S_{6}.
(a) Compute the product of α and β :

$$
\alpha \beta=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 1 & 5 & 3 & 2 & 4
\end{array}\right]
$$

(b) Compute the inverse of α :

$$
\alpha^{-1}=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 6 & 2 & 5 & 1 & 3
\end{array}\right]
$$

(c) Compute the conjugate of β by α :
$\alpha \beta \alpha^{-1}=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 5 & 3 & 2 & 4\end{array}\right]\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 2 & 5 & 1 & 3\end{array}\right]=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 2 & 6 & 5\end{array}\right]$
(d) Do α and β commute?

Compute: $\beta \alpha=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 5 & 3 & 2 & 4\end{array}\right]$.
So yes, α and β commute.

Alternative (and shorter) explanation:
from (c), we have $\alpha \beta \alpha^{-1}=\beta$, hence $\alpha \beta=\beta \alpha$.
4. Let $\alpha=\left[\begin{array}{llllllllcc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 9 & 4 & 7 & 1 & 2 & 8 & 5 & 10 & 6\end{array}\right]$, viewed as an element in S_{10}.
(a) Write α as products of disjoint cycles.

$$
\alpha=(134785)(29106) .
$$

(b) Find the order of α.

The order is the least common multiple of the orders of the two cycles. So it's $\operatorname{lcm}(6,4)=12$.
(c) Write α as a product of transpositions.

$$
\alpha=(15)(18)(17)(14)(13)(26)(210)(29) .
$$

(d) Find the parity of α.

By part (c) of the problem, α can be written as a product of 8 transpositions, hence its parity is even.
5. (a) How many permutations of order 5 are there in S_{5} ?

Solution.

$$
\frac{5!}{5}=4 \times 3 \times 2 \times 1=24
$$

(b) How many permutations of order 5 are there in S_{6} ?

Solution. If a permutation of six elements has order five, it should fix one element and permute the other five. So there are

$$
\binom{6}{5} \cdot \frac{5!}{5}=6 \times(4 \times 3 \times 2 \times 1)=6 \times 24=144
$$

permutations in S_{6} which have order five. The expression in the parentheses is from Part (a) of the problem.
6. Find permutations α and β such that:
(a) $|\alpha|=2,|\beta|=2$, and $|\alpha \beta|=2$.

Sample solution. Let $\alpha=\left(\begin{array}{l}12\end{array}\right), \beta=(34)$. Then $\alpha \beta=(12)(34)$. About the order of $\alpha \beta$, since it's the product of cycles on two disjoint sets, $|\alpha \beta|=\operatorname{lcm}(|\alpha|,|\beta|)=2$.
(b) $|\alpha|=2,|\beta|=2$, and $|\alpha \beta|=3$.

Sample solution. Let $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right), \beta=\left(\begin{array}{ll}2 & 3\end{array}\right)$. Then $\alpha \beta=\left(\begin{array}{ll}1 & 2\end{array}\right)$.
(c) $|\alpha|=2,|\beta|=4$, and $|\alpha \beta|=4$.

Sample solution. Let $\alpha=(12), \beta=(3456)$. Then $\alpha \beta=(12)(3456)$.

