Prof. Alexandru Suciu
Group Theory

Fall 2010

Solutions to Quiz 2

1. Let G be the group defined by the following Cayley table.

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	3	4	1	6	7	8	5
3	3	4	1	2	7	8	5	6
4	4	1	2	3	8	5	6	7
5	5	8	7	6	1	4	3	2
6	6	5	8	7	2	1	4	3
7	7	6	5	8	3	2	1	4
8	8	7	6	5	4	3	2	1

(a) For each element $a \in G$, find the order $|a|$.

k	1	2	3	4	5	6	7	8
$\|k\|$	1	4	2	4	2	2	2	2

(b) What is the center of G ?
$Z(G)=\{1,3\}$
2. Let G be an abelian group with identity e, and let H be the set of all elements $x \in G$ that satisfy the equation $x^{3}=e$. Prove that H is a subgroup of G.
Pf.

- $e^{3}=e$, hence $e \in H$.
- If $a, b \in H$, then $(a b)^{3}=a b a b a b=a^{3} b^{3}=e e=e$. The second equality holds because the group G is abelian. So $a b \in H$.
- If $a \in H$, that is $a^{3}=e$, multiply both sides of the equlity by $\left(a^{-1}\right)^{3}$, we will get $e=\left(a^{-1}\right)^{3}$. Hence $a^{-1} \in H$.
in conclusion, H is a subgroup of G.

3. Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, viewed as a 2×2 matrix with entries in \mathbb{Z}_{5}.
(a) Show that A belongs to $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$.
$\operatorname{det} A=2 \times 2-1 \times 1=3 \neq 0$. Hence $A \in \mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$.
(b) Does A belong to $\mathrm{SL}_{2}\left(\mathbb{Z}_{5}\right)$? Why, or why not?
$A \notin \mathrm{SL}_{2}\left(\mathbb{Z}_{5}\right)$ because $\operatorname{det} A \neq 1$.
(c) Find all the elements in the cyclic subgroup $\langle A\rangle$ generated by A.

$$
\begin{gathered}
A, A^{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
0 & 4 \\
4 & 0
\end{array}\right), \\
A^{3}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
0 & 4 \\
4 & 0
\end{array}\right)=\left(\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right), A^{4}=\left(\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Hence, $\langle A\rangle=\left\{I, A, A^{2}, A^{3}\right\}$.
(d) Find the order of A in $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$.

Since there are four elements in $\langle A\rangle$, so the order of A is 4 .
4. Let G be a group, H a subgroup of G, and a an element of H. Recall $C(a)$ denotes the centralizer of a, whereas $C(H)$ denotes the centralizer of H.
(a) Show that $C(H) \subseteq C(a)$.

Pf. For any $x \in C(H), x h=h x \forall h \in H$.
Since $a \in H, x a=a x$. Hence $x \in C(a)$.
So $C(H) \subseteq C(a)$.
(b) Suppose $H=\langle a\rangle$ is the cyclic subgroup generated by a. Show that $C(\langle a\rangle)=C(a)$.

Pf.

- $a \in\langle a\rangle$, so by $(\mathrm{a}), C(\langle a\rangle) \subseteq C(a)$.
- For any $x \in C(a), x a=a x$, also $a^{-1} x=x a^{-1}$.

So for any $k \in \mathbb{Z}, x a^{k}=a^{k} x$. Hence $x \in C(\langle a\rangle)$.
So $C(a) \subseteq C(\langle a\rangle)$
In conclusion, $C(\langle a\rangle)=C(a)$.
5. Consider the group $G=\mathbb{Z}_{18}$, with group operation addition modulo 18 .
(a) For each element $k \in \mathbb{Z}_{18}$, compute the order of k.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\|k\|$	1	18	9	6	9	18	3	18	9	2	9	18	3	18	9	6	9	18

(b) Find all the generators of \mathbb{Z}_{18}.

One element is a generators of G if and only if its order is 18 .
(Alternative interpretation: One element n is a generators of $G=\mathbb{Z}_{1} 8$ if and only if $\operatorname{gcd}(n, 18)=1$.)
So the generators are $1,5,7,11,13$ and 17 .
(c) Write all the elements of the subgroup $\langle 3\rangle$.

$$
\langle 3\rangle=\{0,3,6,9,12,15\}
$$

(d) Find all the generators of $\langle 3\rangle$.

Since the number of elements in $\langle 3\rangle$ is 6 , one is a generator of $\langle 3\rangle$ if and only if its order is 6 . So it has two generators 3 and 15
6. Let $G=\langle a\rangle$ be a group generated by an element a of order $|a|=28$.
(a) Is $\langle a\rangle=\left\langle a^{-1}\right\rangle$? Is a^{-1} a generator of G ? Justify your answers.

- $\left\langle a^{k}\right\rangle \subseteq\langle a\rangle$ for all $k \in \mathbb{Z}$, so $\left\langle a^{-1}\right\rangle \subseteq\langle a\rangle$.
- $a=\left(a^{-1}\right)^{-1}$, so $\langle a\rangle \subseteq\left\langle a^{-1}\right\rangle$.

So $\left\langle a^{-1}\right\rangle=\langle a\rangle$.
And a^{-1} is a generator of G.
(b) Find all elements of G which generate G.
a^{k} is a generator of G if and only if $\operatorname{gcd}(k, 28)=1$.
So the generators are $a, a^{3}, a^{5}, a^{9}, a^{11}, a^{13}, a^{15}, a^{17}, a^{19}, a^{23}, a^{25}$ and a^{27}.
(c) Find an element in G that has order 4. Does this element generate G ?
a^{7} has order 4. Since its order is not 28 , so it doesn't generate G.
(d) Find the order of a^{12}.

$$
\left|a^{12}\right|=\frac{28}{\operatorname{gcd}(28,12)}=\frac{28}{4}=7
$$

