MATH 3175

Prof. Alexandru Suciu

Group Theory

Fall 2010

Solutions to Quiz 2

1. Let G be the group defined by the following Cayley table.

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	3	4	1	6	7	8	5
3	3	4	1	2	7	8	5	6
4	4	1	2	3	8	5	6	7
5	5	8	7	6	1	4	3	2
6	6	5	8	7	2	1	4	3
7	7	6	5	8	3	2	1	4
8	8	7	6	5	4	3	2	1

(a) For each element $a \in G$, find the order |a|.

k	1	2	3	4	5	6	7	8
k	1	4	2	4	2	2	2	2

(b) What is the center of G? $Z(G) = \{1, 3\}$

- **2.** Let G be an abelian group with identity e, and let H be the set of all elements $x \in G$ that satisfy the equation $x^3 = e$. Prove that H is a subgroup of G. Pf.
 - $e^3 = e$, hence $e \in H$.
 - If $a, b \in H$, then $(ab)^3 = ababab = a^3b^3 = ee = e$. The second equality holds because the group G is abelian. So $ab \in H$.
 - If $a \in H$, that is $a^3 = e$, multiply both sides of the equility by $(a^{-1})^3$, we will get $e = (a^{-1})^3$. Hence $a^{-1} \in H$.

in conclusion, H is a subgroup of G.

3. Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, viewed as a 2 × 2 matrix with entries in \mathbb{Z}_5 . (a) Show that A belongs to $GL_2(\mathbb{Z}_5)$.

det $A = 2 \times 2 - 1 \times 1 = 3 \neq 0$. Hence $A \in GL_2(\mathbb{Z}_5)$.

(b) Does A belong to $SL_2(\mathbb{Z}_5)$? Why, or why not?

 $A \notin \mathrm{SL}_2(\mathbb{Z}_5)$ because det $A \neq 1$.

(c) Find all the elements in the cyclic subgroup $\langle A \rangle$ generated by A.

$$A, A^{2} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix},$$
$$A^{3} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}, A^{4} = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
Hence, $\langle A \rangle = \{I, A, A^{2}, A^{3}\}.$

(d) Find the order of A in $GL_2(\mathbb{Z}_5)$.

Since there are four elements in $\langle A \rangle$, so the order of A is 4.

- 4. Let G be a group, H a subgroup of G, and a an element of H. Recall C(a) denotes the centralizer of a, whereas C(H) denotes the centralizer of H.
 - (a) Show that $C(H) \subseteq C(a)$.

Pf. For any $x \in C(H)$, $xh = hx \ \forall h \in H$. Since $a \in H$, xa = ax. Hence $x \in C(a)$. So $C(H) \subseteq C(a)$.

(b) Suppose $H = \langle a \rangle$ is the cyclic subgroup generated by a. Show that $C(\langle a \rangle) = C(a)$. Pf.

- $a \in \langle a \rangle$, so by (a), $C(\langle a \rangle) \subseteq C(a)$.
- For any $x \in C(a)$, xa = ax, also $a^{-1}x = xa^{-1}$. So for any $k \in \mathbb{Z}$, $xa^k = a^k x$. Hence $x \in C(\langle a \rangle)$. So $C(a) \subset C(\langle a \rangle)$

In conclusion, $C(\langle a \rangle) = C(a)$.

5. Consider the group $G = \mathbb{Z}_{18}$, with group operation addition modulo 18.																	
(a) For each element $k \in \mathbb{Z}_{18}$, compute the order of k.																	
$k \parallel 0$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
k 1	18	9	6	9	18	3	18	9	2	9	18	3	18	9	6	9	18

(b) Find all the generators of \mathbb{Z}_{18} .

One element is a generators of G if and only if its order is 18. (Alternative interpretation: One element n is a generators of $G = \mathbb{Z}_1 8$ if and only if gcd(n, 18) = 1.) So the generators are 1, 5, 7, 11, 13 and 17.

(c) Write all the elements of the subgroup $\langle 3 \rangle$.

 $\langle 3 \rangle = \{0, 3, 6, 9, 12, 15\}$

(d) Find all the generators of $\langle 3 \rangle$.

Since the number of elements in $\langle 3 \rangle$ is 6, one is a generator of $\langle 3 \rangle$ if and only if its order is 6. So it has two generators 3 and 15

6. Let G = ⟨a⟩ be a group generated by an element a of order |a| = 28.
(a) Is ⟨a⟩ = ⟨a⁻¹⟩? Is a⁻¹ a generator of G? Justify your answers.

(b) Find all elements of G which generate G.

 a^k is a generator of G if and only if gcd(k, 28) = 1. So the generators are $a, a^3, a^5, a^9, a^{11}, a^{13}, a^{15}, a^{17}, a^{19}, a^{23}, a^{25}$ and a^{27} .

(c) Find an element in G that has order 4. Does this element generate G? a^7 has order 4. Since its order is not 28, so it doesn't generate G.

(d) Find the order of a^{12} .

$$|a^{12}| = \frac{28}{\gcd(28, 12)} = \frac{28}{4} = 7.$$