	Prof. Alexandru Suciu	
MATH 3175	Group Theory	Fall 2010
Quiz 6		
1. Let H be set of all 2 >	$\times 2$ matrices of the form $\begin{bmatrix} a & 0 \\ c & d \end{bmatrix}$, with $a, c, d \in \mathbb{Z}$ a	and $ad = \pm 1$.

- (a) Show that H is a subgroup of $GL_2(\mathbb{Z})$.
- (b) Is H a normal subgroup of $GL_2(\mathbb{Z})$?

- **2.** Let G = U(16), and $H = \{1, 15\}$.
 - (a) List the elements of G/H.
 - (b) Compute the Cayley table for this group.

- **3.** Let $G = \mathbb{Z}_4 \oplus \mathbb{Z}_2$, and consider the subgroup $H = \{(0,0), (2,0), (0,1), (2,1)\}.$
 - (a) Identify the group H.
 - (b) Show that H is a normal subgroup of G.
 - (c) Identify the group G/H.

- 4. Let \mathbb{R}^* be the multiplicative group of non-zero real numbers, and let $\phi \colon \mathbb{R}^* \to \mathbb{R}^*$ be the function given by $f(x) = x^2$.
 - (a) Show that ϕ is a homomorphism.
 - (b) Find ker(ϕ) and im(ϕ).

- **5.** Suppose $\phi \colon \mathbb{Z}_{20} \to \mathbb{Z}_{12}$ is a homomorphism with $\phi(3) = 9$.
 - (a) Determine $\phi(x)$, for all $x \in \mathbb{Z}_{20}$.
 - (b) Find ker(ϕ) and im(ϕ).

6. Show that there is no surjective homomorphism from $\mathbb{Z}_{27} \oplus \mathbb{Z}_3$ onto $\mathbb{Z}_9 \oplus \mathbb{Z}_9$.