1. Let H be set of all 2×2 matrices of the form $\left[\begin{array}{ll}a & 0 \\ c & d\end{array}\right]$, with $a, c, d \in \mathbb{Z}$ and $a d= \pm 1$.
(a) Show that H is a subgroup of $\mathrm{GL}_{2}(\mathbb{Z})$.
(b) Is H a normal subgroup of $\mathrm{GL}_{2}(\mathbb{Z})$?
2. Let $G=U(16)$, and $H=\{1,15\}$.
(a) List the elements of G / H.
(b) Compute the Cayley table for this group.
3. Let $G=\mathbb{Z}_{4} \oplus \mathbb{Z}_{2}$, and consider the subgroup $H=\{(0,0),(2,0),(0,1),(2,1)\}$.
(a) Identify the group H.
(b) Show that H is a normal subgroup of G.
(c) Identify the group G / H.
4. Let \mathbb{R}^{*} be the multiplicative group of non-zero real numbers, and let $\phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ be the function given by $f(x)=x^{2}$.
(a) Show that ϕ is a homomorphism.
(b) Find $\operatorname{ker}(\phi)$ and $\operatorname{im}(\phi)$.
5. Suppose $\phi: \mathbb{Z}_{20} \rightarrow \mathbb{Z}_{12}$ is a homomorphism with $\phi(3)=9$.
(a) Determine $\phi(x)$, for all $x \in \mathbb{Z}_{20}$.
(b) Find $\operatorname{ker}(\phi)$ and $\operatorname{im}(\phi)$.
6. Show that there is no surjective homomorphism from $\mathbb{Z}_{27} \oplus \mathbb{Z}_{3}$ onto $\mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$.
