MATH 3175

Quiz 4

- **1.** (5 points) Let \mathbb{R} be the additive group of real numbers, and let \mathbb{R}^+ be the multiplicative group of positive real numbers. Consider the map $\phi \colon \mathbb{R} \to \mathbb{R}^+$ given by $\phi(x) = 2^x$.
 - (a) Show that ϕ is an isomorphism from \mathbb{R} to \mathbb{R}^+ .

(b) What is the inverse isomorphism?

2. (4 points) Show that the automorphism group $\operatorname{Aut}(\mathbb{Z}_{10})$ is isomorphic to a cyclic group \mathbb{Z}_n . What is n?

3. (6 points) Show that the following pairs of groups are *not* isomorphic. In each case, explain why.

(a) U(12) and \mathbb{Z}_4 .

(b) S_3 and \mathbb{Z}_6 .

(c) S_4 and D_{12} .

4. (5 points) Let G be a group, and let a be an element of order 30. How many left cosets of $\langle a^6 \rangle$ in $\langle a \rangle$ are there? List all these cosets. (Make sure to indicate all the elements in each coset.)

- 5. (5 points) Let S_3 be the group of permutations of the set $\{1, 2, 3\}$. Consider the subgroup $H = \{(1), (13)\}$.
 - (a) Write down all the left cosets of H in S_3 . (Make sure to indicate all the elements in each coset.)

(b) What is the index of H in S_3 ?

- **6.** (5 points) Suppose G is a group of order 35.
 - (a) What are the possible orders for the elements of G?

(b) Suppose G has an element of order 35. What is G?

(c) Suppose G has precisely one subgroup of order 5, and one subgroup of order 7. What is G?