Practice Quiz 5

- **1.** Prove, by comparing orders of elements, that the following pairs of groups are not isomorphic:
 - (a) $\mathbb{Z}_8 \oplus \mathbb{Z}_4$ and $\mathbb{Z}_{16} \oplus \mathbb{Z}_2$.
 - (b) $\mathbb{Z}_9 \oplus \mathbb{Z}_9$ and $\mathbb{Z}_{27} \oplus \mathbb{Z}_3$.
- **2.** Describe a specific isomorphism $\phi \colon \mathbb{Z}_6 \oplus \mathbb{Z}_5 \to \mathbb{Z}_{30}$.
- **3.** Describe a specific isomorphism $\psi : U(16) \to \mathbb{Z}_2 \oplus \mathbb{Z}_4$.
- **4.** Prove or disprove that $D_6 \cong D_3 \oplus \mathbb{Z}_2$.
- **5.** Prove or disprove that $D_{12} \cong D_4 \oplus \mathbb{Z}_3$.
- **6.** How many elements of order 6 are there in $\mathbb{Z}_6 \oplus \mathbb{Z}_9$?
- **7.** How many elements of order 25 are there in $\mathbb{Z}_5 \oplus \mathbb{Z}_{25}$?
- 8. How many elements of order 3 are there in $\mathbb{Z}_{300000} \oplus \mathbb{Z}_{900000}$?
- **9.** Let p be a prime. Determine the number of elements of order p in $\mathbb{Z}_{p^2} \oplus \mathbb{Z}_{p^2}$.
- 10. Let $G = S_3 \oplus \mathbb{Z}_5$. What are all possible orders of elements in G? Prove that G is not cyclic.

- 11. The group $S_3 \oplus \mathbb{Z}_2$ is isomorphic to one of the following groups: \mathbb{Z}_{12} , $\mathbb{Z}_6 \oplus \mathbb{Z}_2$, A_4 , D_6 . Determine which one, by a process of elimination.
- 12. Describe all abelian groups of order $1,008 = 2^4 \cdot 3^2 \cdot 7$. Write each such group as a direct product of cyclic groups of prime power order.
- **13.** Describe U(1,008) as a direct product of cyclic groups.
- 14. Describe U(195) as a direct product of cyclic groups in four different ways.
- **15.** For each of the following groups, compute the number of elements of order 1, 2, 4, 8, and 16:

 $\mathbb{Z}_{16}, \quad \mathbb{Z}_8 \oplus \mathbb{Z}_2, \quad \mathbb{Z}_4 \oplus \mathbb{Z}_4, \quad \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2.$

- 16. List all abelian groups (up to isomorphism) of order 360.
- 17. (a) List the five partitions of 4, and the abelian groups of order 81 that correspond to them.
 - (b) A certain abelian group G of order 81 has no elements of order 27, and 54 elements of order 9. Which group is it? Why?
- **18.** How many abelian groups (up to isomorphism) are there
 - (a) of order 21?
 - (b) of order 105?
 - (c) of order 210?
 - (d) of order 25?
 - (e) of order 125?
 - (f) of order 625?
- **19.** Let G be a finite abelian group of order n.
 - (a) Suppose n is divisible by 10. Show that G has a cyclic subgroup of order 10.
 - (b) Suppose n is divisible by 9. Show, by example, that G need not have a cyclic subgroup of order 9.
- **20.** Suppose G is an abelian group of order 168, and that G has exactly three elements of order 2. Determine the isomorphism class of G.