Group Theory

Fall 2010

Answers to Problems on Practice Quiz 5

- 1. Prove, by comparing orders of elements, that the following pairs of groups are not isomorphic:
 - (a) $\mathbb{Z}_8 \oplus \mathbb{Z}_4$ and $\mathbb{Z}_{16} \oplus \mathbb{Z}_2$.

There is an element of order 16 in $\mathbb{Z}_{16} \oplus \mathbb{Z}_2$, for instance, (1, 0), but no element of order 16 in $\mathbb{Z}_8 \oplus \mathbb{Z}_4$.

(b) $\mathbb{Z}_9 \oplus \mathbb{Z}_9$ and $\mathbb{Z}_{27} \oplus \mathbb{Z}_3$.

There is an element of order 27 in $\mathbb{Z}_{27} \oplus \mathbb{Z}_3$, for instance, (1,0), but no element of order 27 in $\mathbb{Z}_9 \oplus \mathbb{Z}_9$.

2. Describe a specific isomorphism $\phi \colon \mathbb{Z}_6 \oplus \mathbb{Z}_5 \to \mathbb{Z}_{30}$.

Set $\phi((1,1)) = 1$, and then use the fact that ϕ is a homomorphism to determine $\phi((i,j))$.

3. Describe a specific isomorphism $\psi \colon U(16) \to \mathbb{Z}_2 \oplus \mathbb{Z}_4$.

4. Prove or disprove that $D_6 \cong D_3 \oplus \mathbb{Z}_2$.

Yes, the two groups are isomorphic. Why?

5. Prove or disprove that $D_{12} \cong D_4 \oplus \mathbb{Z}_3$.

Hint: count elements of order 2

6. How many elements of order 6 are there in $\mathbb{Z}_6 \oplus \mathbb{Z}_9$?

The order of (a, b) is the least common multiple of the order of a and that of b. We would like the order of (a, b) to be 6. This can happen only if the order of a is 6 and that of b is 1 or 3, or the order of a is 2 and that of b is 3. The desired elements of order 6 are:

(1,0), (5,0), (1,3), (1,6), (5,3), (5,6), (3,3), (3,6)

7. How many elements of order 25 are there in $\mathbb{Z}_5 \oplus \mathbb{Z}_{25}$?

The number of elements of order 25 in $\mathbb{Z}_5 \oplus \mathbb{Z}_{25}$ equals

 $1 \times \phi(25) + \phi(5) \times \phi(25) = (25 - 5) + (5 - 1) \times (25 - 5) = 100.$

Note 1: The number of elements of order 5 equals $\phi(25) + \phi(5) = (25-5) + (5-1) = 24$. Accounting also for the single element of order 1, namely the identity (0,0), we have in all 100 + 24 + 1 = 125 elements $\mathbb{Z}_5 \oplus \mathbb{Z}_{25}$, as we should (check: $5 \cdot 25 = 125$).

Note 2: We used here the fact that $\phi(p^n) = p^n - p^{n-1}$ for any odd prime p, which follows from the corresponding fact about $U(p^n)$ mentioned in the solution to Problem 13 below.

- 8. How many elements of order 3 are there in $\mathbb{Z}_{300000} \oplus \mathbb{Z}_{900000}$? $1 \times \phi(3) + \phi(3) \times \phi(3) + \phi(3) \times 1 = 8$
- **9.** Let p be a prime. Determine the number of elements of order p in $\mathbb{Z}_{p^2} \oplus \mathbb{Z}_{p^2}$. $1 \times \phi(p) + \phi(p) \times \phi(p) + \phi(p) \times 1 = p^2 - 1$
- **10.** Let $G = S_3 \oplus \mathbb{Z}_5$. What are all possible orders of elements in G? Prove that G is not cyclic.

Possible orders: 1, 2, 3, 5, 10, 15

The order of G is 30. There is no element of order 30 in the group, so G is not cyclic.

11. The group $S_3 \oplus \mathbb{Z}_2$ is isomorphic to one of the following groups: \mathbb{Z}_{12} , $\mathbb{Z}_6 \oplus \mathbb{Z}_2$, A_4 , D_6 . Determine which one, by a process of elimination.

The group $S_3 \oplus \mathbb{Z}_2$ is not abelian, but \mathbb{Z}_{12} and $\mathbb{Z}_6 \oplus \mathbb{Z}_2$ are.

The elements of $S_3 \oplus \mathbb{Z}_2$ have order 1, 2, 3, or 6, whereas the elements of A_4 have order 1, 2, or 3.

So what's the conclusion?

12. Describe all abelian groups of order $1,008 = 2^4 \cdot 3^2 \cdot 7$. Write each such group as a direct product of cyclic groups of prime power order.

$$\begin{split} \mathbb{Z}_{2^4} \oplus \mathbb{Z}_{3^2} \oplus \mathbb{Z}_7, & \mathbb{Z}_{2^4} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_7, \\ \mathbb{Z}_2 \oplus \mathbb{Z}_{2^3} \oplus \mathbb{Z}_{3^2} \oplus \mathbb{Z}_7, & \mathbb{Z}_2 \oplus \mathbb{Z}_{2^3} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_7, \\ \mathbb{Z}_{2^2} \oplus \mathbb{Z}_{2^2} \oplus \mathbb{Z}_{3^2} \oplus \mathbb{Z}_7, & \mathbb{Z}_{2^2} \oplus \mathbb{Z}_{2^2} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_7, \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{2^2} \oplus \mathbb{Z}_{3^2} \oplus \mathbb{Z}_7, & \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{2^2} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_7, \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_7, & \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_7, \\ \end{split}$$

13. Describe U(1,008) as a direct product of cyclic groups.

Some general facts worth knowing:

$$\begin{array}{ll} U(m \cdot n) \cong U(m) \oplus U(n) & \text{if } \gcd(m,n) = 1 \\ U(2) \cong \{0\}, & U(4) \cong \mathbb{Z}_2 \\ U(2^n) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_{2^{n-2}} & \text{for all } n \geq 3 \\ U(p^n) \cong \mathbb{Z}_{p^n - p^{n-1}} & \text{for any odd prime } p \end{array}$$

Hence:

$$U(1008) \cong U(2^4) \oplus U(3^2) \oplus U(7)$$
$$\cong (\mathbb{Z}_2 \oplus \mathbb{Z}_4) \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_6$$
$$\cong \mathbb{Z}_2^3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3^2$$

14. Describe U(195) as a direct product of cyclic groups in four different ways.

$$U(195) \cong U(3) \oplus U(5) \oplus U(13)$$
$$\cong \mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{12}$$
$$\cong \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4$$
$$\cong \mathbb{Z}_6 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4$$

15. For each of the following groups, compute the number of elements of order 1, 2, 4, 8, and 16:

	$\mathbb{Z}_{16},$	$\mathbb{Z}_8\oplus\mathbb{Z}_2,$	$\mathbb{Z}_4\oplus\mathbb{Z}_4,$	$\mathbb{Z}_4\oplus\mathbb{Z}_2$	$\oplus \mathbb{Z}_2.$
--	--------------------	-----------------------------------	-----------------------------------	----------------------------------	------------------------

Group\Order	1	2	4	8	16
\mathbb{Z}_{16}	1	1	2	4	8
$\mathbb{Z}_8\oplus\mathbb{Z}_2$	1	3	4	8	0
$\mathbb{Z}_4\oplus\mathbb{Z}_4$	1	3	12	0	0
$\mathbb{Z}_4\oplus\mathbb{Z}_2\oplus\mathbb{Z}_2$	1	7	8	0	0

16. List all abelian groups (up to isomorphism) of order $160 = 2^5 \cdot 5$.

 $\mathbb{Z}_{2^5} \oplus \mathbb{Z}_5 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_{2^4} \oplus \mathbb{Z}_5 \\ \mathbb{Z}_{2^2} \oplus \mathbb{Z}_{2^3} \oplus \mathbb{Z}_5 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_{2^2} \oplus \mathbb{Z}_{2^2} \oplus \mathbb{Z}_{2^2} \oplus \mathbb{Z}_5 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{2^3} \oplus \mathbb{Z}_5 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{2^2} \oplus \mathbb{Z}_5 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_5 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_5 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_5 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_5 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_5 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus$

16'. List all abelian groups (up to isomorphism) of order $360 = 2^3 \cdot 3^2 \cdot 5$.

 $\mathbb{Z}_{2^3} \oplus \mathbb{Z}_{3^2} \oplus \mathbb{Z}_5 \cong \mathbb{Z}_{360}$ $\mathbb{Z}_{2^2} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{3^2} \oplus \mathbb{Z}_5 \cong \mathbb{Z}_{180} \oplus \mathbb{Z}_2$ $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{3^2} \oplus \mathbb{Z}_5 \cong \mathbb{Z}_{90} \oplus \mathbb{Z}_2^2$ $\mathbb{Z}_{2^3} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \cong \mathbb{Z}_{120} \oplus \mathbb{Z}_3$ etc

17. (a) List the five partitions of 4, and the abelian groups of order 81 that correspond to them.

4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1 $\mathbb{Z}_{81}, \quad \mathbb{Z}_3 \oplus \mathbb{Z}_{27}, \quad \mathbb{Z}_9 \oplus \mathbb{Z}_9, \quad \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_9, \quad \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$

(b) A certain abelian group G of order 81 has no elements of order 27, and 54 elements of order 9. Which group is it? Why?

 $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_9$

- 18. How many abelian groups (up to isomorphism) are there
 - (a) of order 21? One: \mathbb{Z}_{21}
 - (b) of order 105? One: \mathbb{Z}_{105}
 - (c) of order 210? One: \mathbb{Z}_{210}
 - (d) of order 25? $25 = 5 \times 5$, so there are two, \mathbb{Z}_{25} and $\mathbb{Z}_5 \oplus \mathbb{Z}_5$
 - (e) of order 125? Use: $125 = 5 \times 25 = 5 \times 5 \times 5$
 - (f) of order 625? Use: $625 = 5 \times 125 = 25 \times 25 = 5 \times 5 \times 25 = 5 \times 5 \times 5 \times 5$

19. Let G be a finite abelian group of order n.

(a) Suppose n is divisible by 10. Show that G has a cyclic subgroup of order 10.

According to the decomposition theorem for finite abelian groups, G contains the group $\mathbb{Z}_2 \oplus \mathbb{Z}_5$ as a subgroup, which is cyclic of order 10.

(b) Suppose n is divisible by 9. Show, by example, that G need not have a cyclic subgroup of order 9.

Take $G = \mathbb{Z}_3 \oplus \mathbb{Z}_3$.

20. Suppose G is an abelian group of order 168, and that G has exactly three elements of order 2. Determine the isomorphism class of G.

 $G \cong \mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_7.$