Answers to Problems on Practice Quiz 5

1. Prove, by comparing orders of elements, that the following pairs of groups are not isomorphic:
(a) $\mathbb{Z}_{8} \oplus \mathbb{Z}_{4}$ and $\mathbb{Z}_{16} \oplus \mathbb{Z}_{2}$.

There is an element of order 16 in $\mathbb{Z}_{16} \oplus \mathbb{Z}_{2}$, for instance, (1,0), but no element of order 16 in $\mathbb{Z}_{8} \oplus \mathbb{Z}_{4}$.
(b) $\mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$ and $\mathbb{Z}_{27} \oplus \mathbb{Z}_{3}$.

There is an element of order 27 in $\mathbb{Z}_{27} \oplus \mathbb{Z}_{3}$, for instance, $(1,0)$, but no element of order 27 in $\mathbb{Z}_{9} \oplus \mathbb{Z}_{9}$.
2. Describe a specific isomorphism $\phi: \mathbb{Z}_{6} \oplus \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{30}$.

Set $\phi((1,1))=1$, and then use the fact that ϕ is a homomorphism to determine $\phi((i, j))$.
3. Describe a specific isomorphism $\psi: U(16) \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$.

$$
\begin{array}{rll}
1 & \mapsto & (0,0) \\
3 & \mapsto & (0,1) \\
5 & \mapsto(1,1) \\
7 & \mapsto(1,0) \\
9 & \mapsto(0,2) \\
11 & \mapsto(0,3) \\
13 & \mapsto(1,3) \\
15 & \mapsto(1,2)
\end{array}
$$

4. Prove or disprove that $D_{6} \cong D_{3} \oplus \mathbb{Z}_{2}$.

Yes, the two groups are isomorphic. Why?
5. Prove or disprove that $D_{12} \cong D_{4} \oplus \mathbb{Z}_{3}$.

Hint: count elements of order 2
6. How many elements of order 6 are there in $\mathbb{Z}_{6} \oplus \mathbb{Z}_{9}$?

The order of (a, b) is the least common multiple of the order of a and that of b. We would like the order of (a, b) to be 6 . This can happen only if the order of a is 6 and that of b is 1 or 3 , or the order of a is 2 and that of b is 3 . The desired elements of order 6 are:

$$
(1,0),(5,0),(1,3),(1,6),(5,3),(5,6),(3,3),(3,6)
$$

7. How many elements of order 25 are there in $\mathbb{Z}_{5} \oplus \mathbb{Z}_{25}$?

The number of elements of order 25 in $\mathbb{Z}_{5} \oplus \mathbb{Z}_{25}$ equals

$$
1 \times \phi(25)+\phi(5) \times \phi(25)=(25-5)+(5-1) \times(25-5)=100
$$

Note 1: The number of elements of order 5 equals $\phi(25)+\phi(5)=(25-5)+(5-1)=$ 24. Accounting also for the single element of order 1 , namely the identity $(0,0)$, we have in all $100+24+1=125$ elements $\mathbb{Z}_{5} \oplus \mathbb{Z}_{25}$, as we should (check: $5 \cdot 25=125$).

Note 2: We used here the fact that $\phi\left(p^{n}\right)=p^{n}-p^{n-1}$ for any odd prime p, which follows from the corresponding fact about $U\left(p^{n}\right)$ mentioned in the solution to Problem 13 below.
8. How many elements of order 3 are there in $\mathbb{Z}_{300000} \oplus \mathbb{Z}_{900000}$?

$$
1 \times \phi(3)+\phi(3) \times \phi(3)+\phi(3) \times 1=8
$$

9. Let p be a prime. Determine the number of elements of order p in $\mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p^{2}}$.

$$
1 \times \phi(p)+\phi(p) \times \phi(p)+\phi(p) \times 1=p^{2}-1
$$

10. Let $G=S_{3} \oplus \mathbb{Z}_{5}$. What are all possible orders of elements in G ? Prove that G is not cyclic.

Possible orders: $1,2,3,5,10,15$
The order of G is 30 . There is no element of order 30 in the group, so G is not cyclic.
11. The group $S_{3} \oplus \mathbb{Z}_{2}$ is isomorphic to one of the following groups: $\mathbb{Z}_{12}, \mathbb{Z}_{6} \oplus \mathbb{Z}_{2}, A_{4}, D_{6}$. Determine which one, by a process of elimination.

The group $S_{3} \oplus \mathbb{Z}_{2}$ is not abelian, but \mathbb{Z}_{12} and $\mathbb{Z}_{6} \oplus \mathbb{Z}_{2}$ are.
The elements of $S_{3} \oplus \mathbb{Z}_{2}$ have order 1,2 , 3 , or 6 , whereas the elements of A_{4} have order 1,2 , or 3 .

So what's the conclusion?
12. Describe all abelian groups of order $1,008=2^{4} \cdot 3^{2} \cdot 7$. Write each such group as a direct product of cyclic groups of prime power order.
$\mathbb{Z}_{2^{4}} \oplus \mathbb{Z}_{3^{2}} \oplus \mathbb{Z}_{7}, \quad \mathbb{Z}_{2^{4}} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{7}$,
$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{3}} \oplus \mathbb{Z}_{3^{2}} \oplus \mathbb{Z}_{7}, \quad \mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{3}} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{7}$,
$\mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{3^{2}} \oplus \mathbb{Z}_{7}, \quad \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{7}$,
$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{3^{2}} \oplus \mathbb{Z}_{7}, \quad \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{7}$,
$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3^{2}} \oplus \mathbb{Z}_{7}, \quad \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{7}$
13. Describe $U(1,008)$ as a direct product of cyclic groups.

Some general facts worth knowing:

$$
\begin{array}{rlr}
U(m \cdot n) & \cong U(m) \oplus U(n) & \text { if } \operatorname{gcd}(m, n)=1 \\
U(2) & \cong\{0\}, \quad U(4) \cong \mathbb{Z}_{2} & \text { for all } n \geq 3 \\
U\left(2^{n}\right) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{n-2}} & \text { for any odd prime } p
\end{array}
$$

Hence:

$$
\begin{aligned}
U(1008) & \cong U\left(2^{4}\right) \oplus U\left(3^{2}\right) \oplus U(7) \\
& \cong\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}\right) \oplus \mathbb{Z}_{6} \oplus \mathbb{Z}_{6} \\
& \cong \mathbb{Z}_{2}^{3} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{3}^{2}
\end{aligned}
$$

14. Describe $U(195)$ as a direct product of cyclic groups in four different ways.

$$
\begin{aligned}
U(195) & \cong U(3) \oplus U(5) \oplus U(13) \\
& \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{12} \\
& \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{4} \\
& \cong \mathbb{Z}_{6} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}
\end{aligned}
$$

15. For each of the following groups, compute the number of elements of order $1,2,4,8$, and 16 :

$$
\begin{gathered}
\mathbb{Z}_{16}, \quad \mathbb{Z}_{8} \oplus \mathbb{Z}_{2}, \quad \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}, \quad \mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\
\text { Group } \backslash \text { Order } \\
\hline \mathbb{Z}_{16} \\
1
\end{gathered} \left\lvert\, \begin{array}{ccccc}
\\
\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} & 1 & 1 & 2 & 4 \\
\hline & 3 & 4 & 8 & 8 \\
\mathbb{Z}_{4} \oplus \mathbb{Z}_{4} & 1 & 3 & 12 & 0 \\
0 \\
\mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & 1 & 7 & 8 & 0 \\
0
\end{array}\right.
$$

16. List all abelian groups (up to isomorphism) of order $160=2^{5} \cdot 5$.

$$
\begin{aligned}
& \mathbb{Z}_{2^{5}} \oplus \mathbb{Z}_{5} \\
& \mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{4}} \oplus \mathbb{Z}_{5} \\
& \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{2^{3}} \oplus \mathbb{Z}_{5} \\
& \mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{5} \\
& \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{3}} \oplus \mathbb{Z}_{5} \\
& \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{5} \\
& \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{5}
\end{aligned}
$$

$\mathbf{1 6}^{\prime}$. List all abelian groups (up to isomorphism) of order $360=2^{3} \cdot 3^{2} \cdot 5$.
$\mathbb{Z}_{2^{3}} \oplus \mathbb{Z}_{3^{2}} \oplus \mathbb{Z}_{5} \cong \mathbb{Z}_{360}$
$\mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3^{2}} \oplus \mathbb{Z}_{5} \cong \mathbb{Z}_{180} \oplus \mathbb{Z}_{2}$
$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3^{2}} \oplus \mathbb{Z}_{5} \cong \mathbb{Z}_{90} \oplus \mathbb{Z}_{2}^{2}$
$\mathbb{Z}_{2^{3}} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \cong \mathbb{Z}_{120} \oplus \mathbb{Z}_{3}$
etc
17. (a) List the five partitions of 4 , and the abelian groups of order 81 that correspond to them.

$$
\begin{aligned}
& 4=1+3=2+2=1+1+2=1+1+1+1 \\
& \mathbb{Z}_{81}, \quad \mathbb{Z}_{3} \oplus \mathbb{Z}_{27}, \quad \mathbb{Z}_{9} \oplus \mathbb{Z}_{9}, \quad \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{9}, \quad \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}
\end{aligned}
$$

(b) A certain abelian group G of order 81 has no elements of order 27 , and 54 elements of order 9 . Which group is it? Why?

$$
\mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{9}
$$

18. How many abelian groups (up to isomorphism) are there
(a) of order 21 ? One: \mathbb{Z}_{21}
(b) of order 105 ? One: \mathbb{Z}_{105}
(c) of order 210? One: \mathbb{Z}_{210}
(d) of order $25 ? 25=5 \times 5$, so there are two, \mathbb{Z}_{25} and $\mathbb{Z}_{5} \oplus \mathbb{Z}_{5}$
(e) of order 125 ? Use: $125=5 \times 25=5 \times 5 \times 5$
(f) of order 625 ? Use: $625=5 \times 125=25 \times 25=5 \times 5 \times 25=5 \times 5 \times 5 \times 5$
19. Let G be a finite abelian group of order n.
(a) Suppose n is divisible by 10 . Show that G has a cyclic subgroup of order 10 .

According to the decomposition theorem for finite abelian groups, G contains the $\operatorname{group} \mathbb{Z}_{2} \oplus \mathbb{Z}_{5}$ as a subgroup, which is cyclic of order 10 .
(b) Suppose n is divisible by 9 . Show, by example, that G need not have a cyclic subgroup of order 9 .

Take $G=\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$.
20. Suppose G is an abelian group of order 168, and that G has exactly three elements of order 2. Determine the isomorphism class of G.

$$
G \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{7}
$$

